Convolution and ReLLU

Ramin Zarebidoky (LiterallyTheOne)

30 Aug 2025

Convolution and ReLU

Introduction

In the previous tutorial, we learned how to work with images. We learned how
to load an image dataset and how to transform its images into tensors. In this
tutorial, we are going to learn about a layer that is being widely used for images
in Deep Learning called Convolution. Also, we are going to talk about ReLU
and make you more familiar with how to work with any layer.

Convolution

Convolution is an operation in which we slide a smaller matrix (kernel) over a
bigger matrix and calculate the weighted sum. Let’s explain its concepts using
an example. In our example, we have a 6x6 image, and our kernel is 3x3, like
below:

image_size = (6, 6)
kernel_size = (3, 3)

image = np.arange(image_size[0] *
< 1image_size[1]) .reshape(image_size)
kernel = np.ones(kernel_size) / (kernel_size[0] * kernel_size[1])

print("image:")
print (image)
print ("kernel:")
print (kernel)

mmnn

[6 7 8 9 10 11]

[12 13 14 15 16 17]

[18 19 20 21 22 23]

[24 25 26 27 28 29]

[30 31 32 33 34 35]]
kernel :

[[0.11111111 0.11111111 0.11111111]
[0.11111111 0.11111111 0.11111111]7
[0.11111111 0.11111111 0.1111111177

mmnn

As you can see, our image is the numbers from 0 to 35, and our kernel is working
as an average kernel. If we apply convolution, we are going to have a result like
below:

-0.5

0.5

“os 0.5 15 25 35

Figure 1: conv

As you can see in the GIF above, the kernel is being slid on our image, and we
are getting the average of each 3x3 block as an output. Let’s calculate the first
block.

1 1 1 1 1 1 1 1 1
—+1x=4+2x = - — —+12x = +1 —+14x - =
0><9+ ><9+ ><9+6><9—|—7><9+8><9+ ><97L 3><9+ ><9 7

As you can see, the calculations have the same results as the code. Also, our
input’s shape is 6x6, but our output’s shape is 4x4. The reason behind that is
our kernel is 3x3. So, we can only slide it 4 times on our input. For now, we
can calculate it like below:

Wout = (Wz - K’w) +1

Hut:(Hin_Kh)+1

o

o W: Width
o H: Height
o K: Kernel

Now, let’s talk about 3 important things in Convolution. If you want to
experience different convolutions with different options, you can use this code:
conv__gif.py.

Stride

Right now, we are sliding our kernel 1 square at a time. If we decide to slide it
with a number different from one, we can use stride.

Output

-0.5 -0.5

0.5

0.5

15
-0.5 0.5 15

Figure 2: conv stride

As you can see in the GIF above, we put the stride to 2. So, it slides 2 squares
instead of 1 in both x and y axis. As a result, our output’s shape becomes half
of what it was. We can calculate the output’s shape as below:

= 1
Wout Su; +
Hout . (Hln — Kh) + 1
S,

o« W: Width

https://github.com/LiterallyTheOne/Pytorch_Tutorial/blob/main/helpers/conv_gif.py

o H: Height
¢« K: Kernel
e S: Stride

padding

Padding is a technique that we use to fill the surrounding of the input with
some values. The most common value for padding is 0, which is called zero
padding. The main reason for that is to prevent our image from being shrunk
after some convolutions. In the previous example, you saw that the image with
6x6 becomes 4x4. If the input shape and output shape are the same, it is called
zero-padding.

Output

-0.5 -0.5

0.5

1.5

15
2.5

0 12 13 0
3.5 25
0 0
4.5
0 0 35
5.5
0 0

4.5
6.5 1

0 0 0 0 0 0 0 0

7.5 T T T T T T T 5.5
-05 05 15 25 35 45 55 65 75 -0.5 0.5 15 2.5 3.5 4.5 5.5

Figure 3: conv pad 1
As you can see in the GIF above, we have added zeros to the surroundings of

our input. As a result, our output has the same shape as our input (6x6). We
can calculate the output size as below:

Wout = S'w + 1
H, 2P, — K
Hout:(zn+ h h)+1
S

o W: Width

o H: Height

¢ K: Kernel

e S: Stride

o P: Padding

Dilation

Dilation is a technique that we use to make the kernel bigger to cover a bigger
area. To do so, we insert gaps between our kernel. For example, if our kernel is

like below:
1 2 3
4 5 6
7 8 9

After dilation=2, it becomes like below:

1 0 2 0 3
00 0 0 O
4 0 5 0 6
0 00 00O
7 0 8 0 9
os Input o5 Output
0 1 2 3 4 5
0.5
6 7 8 9 10 11

Figure 4: conv dilation 2

As you can see in the GIF above, we have dilation=2, so our kernel becomes
5x5. We can calculate the output shape with the formula below:

(Wzn+2Pw_DwX(Kw_1)_1)

Wout: S +1
H, +2P,—D K,—1)—-1
m,, - (H,, + 2P, Sth(n—1))+1

o W: Width

o H: Height
o K: Kernel
e S: Stride
P: Padding
¢ D: Dilation

Load MNIST
Now, let’s load MINIST again like we did in the previous tutorial.

train_data = MNIST("data/", train=True, download=True,
« transform=transforms.ToTensor())

test_data = MNIST("data/", train=False, download=True,
< transform=transforms.ToTensor())

Now let’s make train, validation, and test data loaders and see the shape
of a batch of our data.

gl = torch.Generator() .manual_seed(20)
val_data, test_data = random_split(test_data, [0.7, 0.3], gl)

train_loader = Dataloader(train_data, batch_size=64,

< shuffle=True)

val_loader = Dataloader(val_data, batch_size=64, shuffle=False)
test_loader = Dataloader(test_data, batch_size=64, shuffle=False)

images, labels = next(iter(train_loader))

print(f"images shape : {images.shapel}")
print(f"labels shape : {labels.shape}")

mmnn

images shape : torch.Size([64, 1, 28, 28])
labels shape : torch.Stze([64])

mnmn

As you can see, we have a batch of our data with a batch size of 64. Each image
is grayscale, so it has 1 channel, and the size of the image is 28x28.

Convolution layer

Earlier, we learned how convolution works. Now, let’s talk about how to use
it in PyTorch. We can define a Convolution layer in PyTorch like below:

conv_1 = nn.Conv2d(
in_channels=1,
out_channels=3,
kernel _size=3,
stride=1,
padding=1,
dilation=1,

In the code above, we have defined a convolution layer. This layer takes 1
channel as its input (because our data has 1 channel). For its output, it creates
3 channels. Also, it has a 3x3 kernel. As you can see, we have control over
stride, padding, and dilation. Now, let’s feed our loaded images to conv_1,
to see what happens.

result = conv_1(images)
print (f"input shape : {images.shapel}")
print (f"output shape : {result.shapel}")

nmmnn

output:
input shape : torch.Size([64, 1, 28, 28])
output shape : torch.Size([64, 3, 28, 28])

mmnn

The results above show that the width and height of our inputs and outputs are
the same. The reason behind that is that we put padding to 1. Also, we have
3 channels for the results as expected.

ReLU

ReLU stands for Rectified Linear Unit. It is one of the most used activation
functions in Deep Learning. The logic behind that is pretty simple. It only
changes the negative values to 0. Here is its formula:

ReLU(z) = maz(0,)

We can define ReLU in PyTorch as below:
relu = nn.ReLU()

Now let’s test it to see how it works:

al = torch.arange(-5, 6)
result = relu(al)

print (f"input: {all}")
print (f"output: {resultl}")

nmmnn

input: temnsor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, &)
output: tensor([O, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5])

mmnn

In the code above, we have created a tensor called al which has values in the
range of [-5, 5]. We fed al to relu and as a result, all the negative values
have become zeros.

Flatten

Flatten is a layer that we use to change the multidimensional input to one
dimension. It is pretty useful when we want to change the dimension of the
output of our convolution layers to one dimension and feed it to our linear
layers in order to classify them. We can define a Flatten layer in PyTorch
like below:

flatten = nn.Flatten()

Now, let’s test it to see if it works as intended.

a2 = torch.arange(0, 16).reshape((2, 2, 4)).unsqueeze(0)
result = flatten(a2)

print (f"input: {a2}")

print(f"input shape : {a2.shape}")
print (f"output: {resultl}")

print (f"output shape : {result.shape}")

mmnn

input: temsor([[[[0, 1, 2, 3],
[4-: 5; 6: 7]]:

[rs, 9, 10, 11j,

[12, 13, 14, 15]711)
input shape: torch.Size([1, 2, 2, 4])
output: tensor([[O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
o 12, 13, 14, 15]])

output shape: torch.Size([1, 16])

mmnn

In the code above, we have defined an input called a2 with the shape of 2x2x4.
The values in a2 are in range of [0, 16]. Then we used unsqueeze(0) to
add a dimension to the start of the tensor. We did that because each layer in
PyTorch requires a batch of data, not a single data by itself. Then we fed that
data to the flatten layer. As a result, we can see the input shape has changed
from 2x2x4 to 16. Also, all the data is untouched.

Make a convolution model

Now that we know how convolution works and know how to connect convolution
with a linear model for classification, let’s make a convolution model to classify
the MNIST dataset.

ommmmmceeeeeeeeeses [Define Model J-———-———————————-——-
class IRISClassifier(nn.Module):
def __init__(self):
super () .__init__Q)

self.conv_layers = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=32,
< kernel_size=3, padding=1, stride=2), # 32z14z1/
nn.RelLU(Q),
nn.Conv2d(in_channels=32, out_channels=64,
o~ kernel_size=3, padding=1, stride=2), # 64z7z7
nn.RelLU(Q),
nn.Conv2d(in_channels=64, out_channels=128,
< kernel_size=3, padding=1, stride=3), # 128z3z3
nn.RelLU(),
)

self.classification_layers = nn.Sequential(
nn.Flatten(),
nn.Linear (128 * 3 * 3, 128),
nn.RelLU(Q),
nn.Linear (128, 10),
)

def forward(self, x):
x = self.conv_layers(x)
x = self.classification_layers(x)
return x

In the code above, we have 2 parts for our model. The first part consists of

Convolution layers (conv_layers), and the other part has Classification
layers (classification_layers). When we feed data to this model, it first
goes through conv_layers, then it goes through classification_layer. For
conv_layers, we have 3 Convolution layers. The first one takes the data
with 1 channel and creates 32 channels as its output. Its kernel size is 3 with
padding 1 and a stride of 2, so we can calculate its output shape as below:

W, 2P, — K 28+2x1-3
Wiy = W P20 R g B8R2X129) 1y 30 [W= 1)

w

_ (H,, +2P, — K} (28+2x1-3) —
H,, = 5 +1—>f+1_13+1—>

For the second convolution, we take 32 channels and make 64 channels. Kernel
size is 3, padding is 1, and stride is 2. So, we can calculate the output shape as
below:

Ww. 2P — K 1442x1—3
Wiy = Won P2l = Bu) g QAE2XTZD) 4y 1 [W =7

w

_ (H;, +2P, — K}) (144+2x1-3) B —
H,y = 5 +1— 5 +1=64+1—[Hyy =7]

And the third convolution has 64 input channels and makes 128 output channels.
Its kernel size is 3, its padding is 1, and its stride is 3. So, let’s calculate the
output shape of this convolution to:

w. 2P — K T+2x1-3
W= W3 2= Ra) g TH2XA20) 4y g iy [Wo = 9]

w

_ (H, +2P, — K,) (T+2x1-3) _ —
= Bt 2Ty TE2AZD) g g1 A, =3

Our classification layer has 2 linear layers. At first, we flatten the output of our
conv_layers. The output was in the shape of 128 x 3 x 3, so the flatten of that
would be the multiplication of them. First, linear layer takes the 128 x 3 x 3
and makes an output with 128 neurons. And the last linear layer takes 128 as
its input shape and outputs the 10 class that we have for MINIST. Now, let’s
give a batch of MINIST images to see if it works or not:

10

model = IRISClassifier()
model (images)

nmnn

tensor([[-0.0223, 0.0049, -0.0598, -0.0597, -0.0689, -0.0711,
o 0.0565, -0.0623,
0.0433, 0.0466],
[-0.0215, 0.0064, -0.0591, -0.0567, -0.0690, -0.0680,
~ 0.0531, -0.0552,
0.0441, 0.0499],

[-0.0225, 0.0070, -0.0598, -0.0565, -0.0709, -0.0740,
- 0.0536, -0.0624,
0.0413, 0.0421]], grad_fn=<AddmmBackward0>)

nmmnn

As you can see, our model predicts 10 classes for each image, which is the thing
that we wanted.

Train the model

Now, let’s change the last code (train_ tensorboard.py) And change the data to
MNIST and change the model to our new convolution model. I have already
done that, and the changes are in train_ mnist_ conv.py. So let’s run it for 5
epochs and see the output.

mmnn

epoch: 0
train:
loss: 0.2567
accuracy: 0.9219
validation:
loss: 0.0748
accuracy: 0.9757
epoch: 1
train:

11

https://github.com/LiterallyTheOne/Pytorch_Tutorial/blob/main/src/7_plot_tensorboard/train_tensorboard.py
https://github.com/LiterallyTheOne/Pytorch_Tutorial/blob/main/src/9_convolution_relu/train_mnist_conv.py

loss: 0.0736

accuracy: 0.9773
validation:

loss: 0.0575

accuracy: 0.9816

epoch: 2
train:
loss: 0.0501
accuracy: 0.9843
validation:
loss: 0.0592

accuracy: 0.9813

epoch: 3
train:
loss: 0.0363
accuracy: 0.9887
validation:
loss: 0.0389

accuracy: 0.9859

epoch: 4
train:
loss: 0.0289
accuracy: 0.9912
validation:
loss: 0.0409

accuracy: 0.9854

loss: 0.0465
accuracy: 0.9863

mnn

As you can see, we have reached a pretty good accuracy, and our loss is pretty
low.

Conclusion

In this tutorial, we learned how Convolution works and how we can use it for
image datasets. First, we explained the methodology of Convolution. Then,
we showed how we can use Convolution, ReLU, and Flatten in PyTorch.
After that, we made a model and calculated the output of each Convolution
layer. Finally, we trained our model and saw the output.

12

	Convolution and ReLU
	Introduction
	Convolution
	Stride
	padding
	Dilation

	Load MNIST
	Convolution layer
	ReLU
	Flatten
	Make a convolution model
	Train the model
	Conclusion

