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Work with Images
Introduction
In the previous tutorials, we have learned how to work with one-dimensional
data. In this tutorial, we are going to learn how to make a dataloader out of
images.

Load a dataset
PyTorch has a built-in way to download and load some important datasets.
This functionality is available with their TorchVision package. Let’s download
a minimal Dataset called MNIST. This dataset contains 0 to 9 handwritten
numbers. To do so, we can use the code below:
from torchvision.datasets import MNIST

train_data = MNIST("data/", train=True, download=True)
test_data = MNIST("data/", train=False, download=True)

In the code above, we loaded MNIST in two subsets: train and test. The first
argument is the path of the data that we want to load. In our case, we set
that to data/. With the train argument, we can control whether we want to
download train subset or test subset. When we set download to True, if the
data is not available in the given path, it would download it. These subsets
are the instances of Dataset. To make sure, we can check them with the code
below:
print(isinstance(train_data, Dataset))

"""
--------
output:

True
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"""

So, knowing this, we can do all the things with Dataset that we would do before.
Let’s now see the size of each dataset.
print(f"train_data's size: {len(train_data)}")
print(f"test_data's size: {len(test_data)}")

"""
--------
output:

train_data's size: 60000
test_data's size: 10000
"""

As you can see, we have 60000 data for training and 10000 data for testing.
Now let’s display one of the images.
from matplotlib import pyplot as plt

for image, label in train_data:
plt.imshow(image, cmap="gray")
print(label)
break

"""
--------
output:

5
"""

In the code above, we have displayed one sample of MNIST with its label.

Transforms
As you recall, in the previous tutorials, we had created a Dataset like below:
class IRISDataset(Dataset):

def __init__(self, data, target):
super().__init__()
self.data = data
self.target = target

def __len__(self):
return len(self.data)
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Figure 1: mnist sample
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def __getitem__(self, idx):
data = torch.tensor(self.data[idx]).to(torch.float)
target = torch.tensor(self.target[idx])
return data, target

In the __getitem__ function, we were transforming our data and target to
tensors to make them ready for our model. In PyTorch, it is a good prac-
tice to implement two more arguments for our Dataset called: transform and
target_transform. transform is being used for transforming each sample of
data, and target_transform is being used for transforming each target. In the
code above, we have:

• transfrom: torch.tensor(self.data[idx]).to(torch.float)
• target_transform: torch.tensor(self.target[idx])

If we want to change our dataset to have these two arguments, we can do
something like below:
class IRISDataset(Dataset):

def __init__(self, data, target, transform=None,
target_transform=None):↪

super().__init__()
self.data = data
self.target = target

if transform is None:
transform = lambda x: torch.tensor(x).to(torch.float)

if target_transform is None:
target_transform = lambda x: torch.tensor(x)

self.transform = transform
self.target_transform = target_transform

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
data = self.transform(self.data[idx])
target = self.target_transform(self.target[idx])
return data, target

As you can see, in the code above, we have defined transform and
target_transform as arguments. If they were None, we would have de-
fined them as they were, using lambda function. TorchVision has provided us
with some built-in transforms for images. You can find all the transforms in
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this link: TorchVision Transforms At first, we are going to use the ToTensor
transform. This module transforms the image to Tensor. So, when we want to
load our MNIST, we are going to add that as a transform.
from torchvision import transforms

train_data = MNIST("data/", train=True, download=True,
transform=transforms.ToTensor())↪

test_data = MNIST("data/", train=False, download=True,
transform=transforms.ToTensor())↪

Now, let’s see if it’s applied or not.
for image, label in train_data:

print(type(image))
break

"""
--------
output:

<class 'torch.Tensor'>
"""

As you can see, the type of our image is Tensor.

We can make a sequence of transforms using transforms.Compose. For ex-
ample, let’s first resize each image to [14, 14] (our current size is [28, 28]).
Then, transform them into tensors.
transform_compose = transforms.Compose(

[
transforms.Resize([14, 14]),
transforms.ToTensor()

]
)

Now, let’s test it to see if it works or not.
# -------------------[ Before transform compose

]-------------------↪

for image, label in train_data:
print(f"Before transform compose: {image.shape}")
break

train_data = MNIST("data/", train=True, download=True,
transform=transform_compose)↪

test_data = MNIST("data/", train=False, download=True,
transform=transform_compose)↪
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# -------------------[ After transform compose
]-------------------↪

for image, label in train_data:
print(f"After transform compose: {image.shape}")
break

"""
--------
output:

Before transform compose: torch.Size([1, 28, 28])
After transform compose: torch.Size([1, 14, 14])
"""

As you can see in the code above, it works as intended.

Train, validation, and test
We had 60000 data to train and 10000 data for testing. Now, let’s make a
validation subset as well. One of the ways to do that is to split test subset
into two subsets.
g1 = torch.Generator().manual_seed(20)
val_data, test_data = random_split(test_data, [0.7, 0.3], g1)

print(f"val_data's size: {len(val_data)}")
print(f"test_data's size: {len(test_data)}")

"""
--------
output:
val_data's size: 7000
test_data's size: 3000

"""

In the code above, I have divided the test_data into val_data and test_data.
So, 70% of the 10000 (10000 × 70) goes for validation, and the rest goes for
testing. Now, let’s make data loaders from them.
train_loader = DataLoader(train_data, batch_size=64,

shuffle=True)↪

val_loader = DataLoader(val_data, batch_size=64, shuffle=False)
test_loader = DataLoader(test_data, batch_size=64, shuffle=False)

As you can see, we now have all 3 dataloaders which we needed to train our
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model.

ImageFolder
One of the ways to load an image dataset is with ImageFolder. ImageFolder
requires your data to be in this structure:

• main_folder
– class_1

∗ image_1
∗ image_2
∗ …

– class_2
∗ image_3
∗ image_4
∗ …

– …

As you can see, each class has its own directory and all its data is in that
directory. Let’s download a dataset from Kaggle with the name of Tom and
Jerry in this link: Tom and Jerry. We can use the code below to do that:
import kagglehub
from pathlib import Path

path = kagglehub.dataset_download( ⌋
"balabaskar/tom-and-jerry-image-classification")↪

path = Path(path) / "tom_and_jerry/tom_and_jerry"

In the code above, I have downloaded the dataset using kagglehub, also I
changed the path to the correct path to have the structure that we wanted.
Now, let’s see what classes we have:
for x in path.iterdir():

print(x.name)

"""
--------
output:

tom
jerry
tom_jerry_1
tom_jerry_0
"""

As you can see, we have four classes:

• tom: when only Tom is in the picture
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• jerry: when only Jerry is in the picture
• tom_jerry_1: when both of them are on the picture
• tom_jerry_0: when none of them are on the picture

Let’s load this dataset using ImageFolder.
tom_and_jerry_transforms =

transforms.Compose([transforms.Resize([90, 160]),
transforms.ToTensor()])

↪

↪

all_data = ImageFolder(path, transform=tom_and_jerry_transforms)

In the code above, I have defined two transforms, one for resizing and one to
transform each image into a tensor. Then, I loaded the data using ImageFolder.
Now, let’s display one of the images.
for image, label in all_data:

plt.figure()
plt.imshow(transforms.ToPILImage()(image))
print(label)
break

"""
--------
output:

0
"""

In the code above, I have displayed one image of our dataset. Images are
currently in tensor format. To change them back to images, I used a transform
called: ToPILImage(). Now, let’s split them and make dataloaders:
g1 = torch.Generator().manual_seed(20)
train_data, val_data, test_data = random_split(all_data, [0.7,

0.2, 0.1], g1)↪

train_loader = DataLoader(train_data, batch_size=16,
shuffle=True)↪

val_loader = DataLoader(val_data, batch_size=16, shuffle=False)
test_loader = DataLoader(test_data, batch_size=16, shuffle=False)

And here you have it, we have our 3 dataloaders that we can work with.

Conclusion
In this tutorial, we have learned how to load and prepare image datasets. First,
we used the built-in modules in TorchVision. Then, we explained transforms
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Figure 2: tom and jerry sample
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to prepare our dataset. Finally, we have learned how to work with ImageFolder.

10


	Work with Images
	Introduction
	Load a dataset
	Transforms
	Train, validation, and test
	ImageFolder
	Conclusion


