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Introduction
In the previous tutorials, we have learned about Model, Data, and Train-
ing fundamentals. Now, let’s combine them and train our model on IRIS
dataset.

Load the data and make the model
Let’s go step by step and load our data, and make our model, like the previous
tutorial, to train it. First, let’s load our data with the code below:
iris = load_iris()

Now, let’s make a Dataset for our data.
class IRISDataset(Dataset):

def __init__(self, data, target):
super().__init__()
self.data = data
self.target = target

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
data = torch.tensor(self.data[idx]).to(torch.float)
target = torch.tensor(self.target[idx])
return data, target

iris_dataset = IRISDataset(iris.data, iris.target)

Then, it is time to split it into train, validation, and test.
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g1 = torch.Generator().manual_seed(20)
train_data, val_data, test_data = random_split(iris_dataset,

[0.7, 0.2, 0.1], g1)↪

train_loader = DataLoader(train_data, batch_size=10,
shuffle=True)↪

val_loader = DataLoader(val_data, batch_size=10, shuffle=False)
test_loader = DataLoader(test_data, batch_size=10, shuffle=False)

Let’s create our model as well.
class IRISClassifier(nn.Module):

def __init__(self):
super().__init__()

self.layers = nn.Sequential(
nn.Linear(4, 16),
nn.Linear(16, 8),
nn.Linear(8, 3),

)

def forward(self, x):
return self.layers(x)

model = IRISClassifier()

Now, we are ready to start learning how to train our model.

Train the model
Right now, we know how to train our model in PyTorch. So, let’s write an
optimization step for our model. First, we need to define loss function and
optimizer.
loss_fn = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters())

Now, let’s write our training loop.
model.train()

for batch_of_data, batch_of_target in train_loader:
optimizer.zero_grad()

logits = model(batch_of_data)
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loss = loss_fn(logits, batch_of_target)
print(f"loss: {loss.item()}")

loss.backward()

optimizer.step()

"""
--------
output:

loss: 1.181538462638855
loss: 1.1570122241973877
loss: 1.1441924571990967
loss: 1.1753343343734741
loss: 1.1002519130706787
loss: 1.1666862964630127
loss: 1.0838695764541626
loss: 1.1226308345794678
loss: 1.1205450296401978
loss: 1.1404510736465454
loss: 1.094001054763794
"""

At first, we make sure that our model is in train mode by using model.train()
(When we freshly create a model, it is in train mode). Then, we write the code
for the optimization. As you can see, for each batch of data, we calculated
the loss and the gradients and optimized the weights. You might have noticed
that the loss in each batch is not necessarily improving. Don’t worry about it,
because we are going to address it pretty soon.

Evaluate the model
Now, let’s write a code to evaluate our model on validation dataset.
model.eval()

with torch.inference_mode():
total_loss = 0

for batch_of_data, batch_of_target in val_loader:
logits = model(batch_of_data)

loss = loss_fn(logits, batch_of_target)
total_loss += loss.item()
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print(f"average_loss: {total_loss / len(val_loader)}")

"""
--------
output:

average_loss: 1.0044949253400166
"""

In the code above, at first, we set the model to the evaluation mode, us-
ing model.eval(). With torch.inference_mode(), we disable all the gra-
dient calculations, because we don’t need to train our model; we only need
to evaluate it. Then, we iterate over our validation dataset. We give each
batch_of_data to the model to predict the output. After that, we calculate
the loss and add it to the total_loss. And finally, we calculate the average_loss
by dividing total_loss by the number of batches, which can be accessed by
len(val_loader).

Now, let’s add accuracy to this as well. We can calculate the accuracy by
dividing the number of correct predictions by the total number of all samples.
To do so, we can change our code as below:
model.eval()

with torch.inference_mode():
total_loss = 0
total_correct = 0

for batch_of_data, batch_of_target in val_loader:
logits = model(batch_of_data)

loss = loss_fn(logits, batch_of_target)
total_loss += loss.item()

predictions = logits.argmax(dim=1)
total_correct +=

predictions.eq(batch_of_target).sum().item()↪

print(f"average_loss: {total_loss / len(val_loader)}")
print(f"accuracy: {total_correct / len(val_loader.dataset)}")

"""
--------
output:

average_loss: 1.0044949253400166
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accuracy: 0.6333333333333333
"""

As you can see, I added a variable called total_correct which calculates the
total number of correct predictions. To calculate if our prediction is wrong or
right, as we have done before, at first, we can perform argmax on dimension
1 (Right now, we have two dimensions, 0 and 1). Then, we check our predic-
tion against the correct target. Finally, we divide total_correct by the total
number of samples, which can be accessed with len(val_loader.dataset).

make train_step and val_step
Now, for convenience, let’s put our Training step and Validation step into
their functions. Let’s start with Training step.
def train_step():

model.train()

total_loss = 0

for batch_of_data, batch_of_target in train_loader:
optimizer.zero_grad()

logits = model(batch_of_data)

loss = loss_fn(logits, batch_of_target)
total_loss += loss.item()

loss.backward()

optimizer.step()

print(f"training average_loss: {total_loss /
len(train_loader)}")↪

As you can see, in the example above, I copied the code that we had written
before, with only two changes. First, I removed the printing of loss in each
batch, to make the output more clean. Second, I calculate average_loss like
we did in the evaluation. Now, let’s add Validation step.
def val_step():

model.eval()

with torch.inference_mode():
total_loss = 0
total_correct = 0
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for batch_of_data, batch_of_target in val_loader:
logits = model(batch_of_data)

loss = loss_fn(logits, batch_of_target)
total_loss += loss.item()

predictions = logits.argmax(dim=1)
total_correct +=

predictions.eq(batch_of_target).sum().item()↪

print(f"validation average_loss: {total_loss /
len(val_loader)}")↪

print(f"validation accuracy: {total_correct /
len(val_loader.dataset)}")↪

As you can see in the code above, I just copied the code we have written previ-
ously. Now, let’s test them to see if they are working correctly.
train_step()

"""
--------
output:

training average_loss: 1.1503298336809331
"""

val_step()

"""
--------
output:

validation average_loss: 1.2322160800298054
validation accuracy: 0.23333333333333334
"""

Epoch
Now that we have our Training and Validation step ready, let’s talk about
epoch. When we train our model on all the batches for one time, we take one
epoch. If we repeat this loop for n times, we took n epochs. Let’s create a fresh
model, define our loss function, give the model’s parameters to our optimizer,
and train our model for 5 epochs
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model = IRISClassifier()

loss_fn = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters())

for epoch in range(5):
print("-" * 20)
print(f"epoch: {epoch}")
train_step()
val_step()

"""
--------
output:

--------------------
epoch: 0
training average_loss: 1.1236063025214456
validation average_loss: 1.0980798403422039
validation accuracy: 0.2
--------------------
epoch: 1
training average_loss: 1.0682959123091265
validation average_loss: 1.043296257654826
validation accuracy: 0.5333333333333333
--------------------
epoch: 2
training average_loss: 1.0306043733250012
validation average_loss: 1.0079283316930134
validation accuracy: 0.6
--------------------
epoch: 3
training average_loss: 0.991635187105699
validation average_loss: 0.9691224495569865
validation accuracy: 0.8333333333333334
--------------------
epoch: 4
training average_loss: 0.9554464546116915
validation average_loss: 0.9225329160690308
validation accuracy: 0.7666666666666667
"""

As you can see, in the code above, we have trained and evaluated our model in
each epoch. Your results and outputs might be different from mine. Because
we are working on a small dataset, we haven’t learned all the layers and training
techniques, so the training results might seem a little bit random. But don’t
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worry about it, we are going to fix that pretty soon.

Run on Accelerator
We learned how to find the available accelerator in the previous tutorials. Now,
we are going to do that, and also make some changes in the code in order to
train and evaluate our model on the accelerator.
if torch.accelerator.is_available():

device = torch.accelerator.current_accelerator()
else:

device = "cpu"

print(device)

"""
--------
output:

mps
"""

In the code above, I have found the current accelerator, which for me is mps.
Now, let’s change our train_step.
def train_step():

model.train()

total_loss = 0

for batch_of_data, batch_of_target in train_loader:
batch_of_data = batch_of_data.to(device)
batch_of_target = batch_of_target.to(device)

optimizer.zero_grad()

logits = model(batch_of_data)

loss = loss_fn(logits, batch_of_target)
total_loss += loss.item()

loss.backward()

optimizer.step()

print(f"training average_loss: {total_loss /
len(train_loader)}")↪
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As you can see, I changed the device of batch_of_data and batch_of_target
to the current device. I should do the same for my val_step as well.
def val_step():

model.eval()

with torch.inference_mode():
total_loss = 0
total_correct = 0

for batch_of_data, batch_of_target in val_loader:
batch_of_data = batch_of_data.to(device)
batch_of_target = batch_of_target.to(device)

logits = model(batch_of_data)

loss = loss_fn(logits, batch_of_target)
total_loss += loss.item()

predictions = logits.argmax(dim=1)
total_correct +=

predictions.eq(batch_of_target).sum().item()↪

print(f"validation average_loss: {total_loss /
len(val_loader)}")↪

print(f"validation accuracy: {total_correct /
len(val_loader.dataset)}")↪

Now, I should only change the device of the model too and run the training
procedure again.
model = IRISClassifier()
model.to(device)

loss_fn = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters())

for epoch in range(5):
print("-" * 20)
print(f"epoch: {epoch}")
train_step()
val_step()

"""
--------
output:
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--------------------
epoch: 0
training average_loss: 1.1559315432201733
validation average_loss: 1.0502928098042805
validation accuracy: 0.36666666666666664
--------------------
epoch: 1
training average_loss: 1.078606204553084
validation average_loss: 1.0400715271631877
validation accuracy: 0.36666666666666664
--------------------
epoch: 2
training average_loss: 1.0253016406839544
validation average_loss: 1.0179588794708252
validation accuracy: 0.2
--------------------
epoch: 3
training average_loss: 0.9952371987429532
validation average_loss: 0.9651865760485331
validation accuracy: 0.6
--------------------
epoch: 4
training average_loss: 0.9447547793388367
validation average_loss: 0.9108109474182129
validation accuracy: 0.7666666666666667
"""

As you can see, everything is working correctly.

Save and load our model
Now, to save our model, we can use torch.save function.
torch.save(model.state_dict(), "model.pth")

With the code above, we save all the weights of our model to a file called
model.pth. Now, let’s load it into a new model, using torch.load.
new_model = IRISClassifier()

weights = torch.load("model.pth")

new_model.load_state_dict(weights)

new_model = new_model.to(device)

In the code above, I have created a new instance of our model with the name of
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new_model. Then, I loaded the saved weights with torch.load. After that, I
used load_state_dict to load the weights. Finally, I changed the device of our
model to the current accelerator. To test if we have done everything correctly,
we can use the code below:
for key in new_model.state_dict().keys():

if key not in model.state_dict().keys():
print(f"Key {key} not in model.state_dict()")
break

if not torch.allclose(new_model.state_dict()[key],
model.state_dict()[key]):↪

print("Values are different")
break

In the code above, we check if all the layers and weights that we loaded are the
same as the model that we used for saving.

Conclusion
In this tutorial, we have trained a simple model with simple layers. The out-
puts right now are pretty random. But moving forward, we are going to learn
more about the different layers and how to get better results. Right now, we
know what a simple Deep Learning project looks like. We trained our model
and then evaluated it. We learned about Epoch and learned how to use the
accelerator. Finally, we learned how to save our model and load it again.
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