
AutoGrad, loss function, and optimizer

Ramin Zarebidoky (LiterallyTheOne)

18 Aug 2025

AutoGrad, loss function, and optimizer
Introduction
Training a model is one of the most important features in PyTorch. In the
previous tutorials, we prepared our data and our model. Now, we should learn
about training fundamentals.

AutoGrad
One of the fundamental parts of each Tensor in PyTorch is that they can store
gradients, using requires_grad argument. Let’s define an equation with some
tensors:
a = torch.tensor(3.0, requires_grad=True)
b = torch.tensor(2.0, requires_grad=True)

y = a ** 2 + b

In the code above, we have tensor a and tensor b with the values of 3 and 2. As
you can see, I set the requires_grad argument to true for both of them. Then,
I have defined an equation, where:

𝑦 = 𝑎2 + 𝑏

Now, let’s calculate the gradient. To do so, we can use a function called
.backward(). This function looks at the computational graph of the tensor
and calculates the gradient of the tensors that require gradient. So, if I call
the .backward() function for y, these gradients would be calculated 𝛿𝑦

𝛿𝑎 and 𝛿𝑦
𝛿𝑏 .

Before calling that function, let’s calculate it ourselves.

𝛿𝑦
𝛿𝑎 = 𝛿(𝑎2 + 𝑏)

𝛿𝑎 = 2𝑎 𝑎=3−−→ 6

1

𝛿𝑦
𝛿𝑏 = 𝛿(𝑎2 + 𝑏)

𝛿𝑏 = 1

Now, let’s see if we get the same results when we call the .backward() function
for y.
y.backward()

print("dy/da: ", a.grad.item()) # d(a**2 + b)/da = 2*a
----a=3----> 6↪

print("dy/db: ", b.grad.item()) # d(a**2+b)/db = 1

"""

output:

dy/da: 6.0
dy/db: 1.0
"""

As you can see, our results are the same. In Deep Learning, we use gradient
to update the weights of our model. To do so, we can define a loss function
as below:

𝑙 = (𝑦 − ̂𝑦)2

• 𝑙: loss function
• 𝑦: true label
• ̂𝑦: prediction

Now, let’s have another example that is closer to what we want to do in Deep
Learning.
w = torch.tensor(5.0, requires_grad=True) # weight
b = torch.tensor(2.0, requires_grad=True) # bias

x = 2 # input
y_true = 7 # true output

y_hat = w * x + b # prediction

loss = (y_hat - y_true) ** 2 # calculate loss
loss.backward() # calculate gradients

print(f"d(loss)/dw: {w.grad.item()}")
print(f"d(loss)/db: {b.grad.item()}")

"""

2

output:

d(loss)/dw: 20.0
d(loss)/db: 10.0
"""

In the example above, we have w that represents weight, and we also have b
that represents bias. Our input is 2 and our expected output is 7. We predict
the output by multiplying the input (x) by w, and then add it to b to get the
prediction that we want. For our loss function, we have the difference between
the prediction and true output powered by 2. Then, we calculate the gradient
of loss with respect to w and b and print them. Let’s calculate the gradients
ourselves to be able to check the results.

𝛿𝑙
𝛿𝑤 = 𝛿(𝑤𝑥 + 𝑏 − 𝑦)2

𝛿𝑤 = 𝛿(𝑤𝑥 + 𝑏 − 𝑦)2

𝛿(𝑤𝑥 + 𝑏 − 𝑦)
𝛿(𝑤𝑥 + 𝑏 − 𝑦)

𝛿𝑤 = 2(𝑤𝑥+𝑏−𝑦)𝑥
𝑤=5,𝑏=2,𝑥=2,𝑦=7
−−−−−−−−−−−→ 2(5×2+2−7)×2 = 4(10+2−7) = 20

𝛿𝑙
𝛿𝑏 = 𝛿(𝑤𝑥 + 𝑏 − 𝑦)2

𝛿𝑏 = 𝛿(𝑤𝑥 + 𝑏 − 𝑦)2

𝛿(𝑤𝑥 + 𝑏 − 𝑦)
𝛿(𝑤𝑥 + 𝑏 − 𝑦)

𝛿𝑏 = 2(𝑤𝑥+𝑏−𝑦)
𝑤=5,𝑏=2,𝑥=2,𝑦=7
−−−−−−−−−−−→ 2(5×2+2−7) = 2(10+2−7) = 10

As you can see, the results are the same as our calculations.

Loss function
Now that we have an idea of how AutoGrad works, let’s talk about a loss
function. We have different loss functions, the one that we are going to
explain right now is CrossEntropyLoss. If you want to know more about
CrossEntropyLoss, you can check out this link: Cross Entropy Loss PyTorch.
Now, let’s define our loss function and test it to see how it works.
y_true = torch.tensor([0, 1])
y = torch.tensor([

[2.0, 8.0],
[5.0, 5.0],

])

loss_fn = nn.CrossEntropyLoss()
loss = loss_fn(y, y_true)

print(loss.item())

"""

3

https://docs.pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

output:
3.347811460494995
"""

In the code above, I have 2 classes (1 and 0). As you can see, the class of the
first sample is 0 and the sample is 1. My prediction for the first sample has a
higher value for the class 1. My second prediction has equal value for both of
them. So, the loss output is not equal to zero. If I want my loss output to be
zero, my predictions should look something like this:
y_true = torch.tensor([0, 1])
y = torch.tensor([

[100.0, 0.0],
[0.0, 100.0]

])

loss_fn = nn.CrossEntropyLoss()
loss = loss_fn(y, y_true)

print(loss.item())

"""

output:

0.0
"""

As you can see, the prediction on each sample has a higher value with regard to
its true class. So, as a result, the output of our loss function would be zero.

Optimizer
We have learned how to calculate the gradients of our loss function. Now, let’s
talk about how to update the weights of our model. To do that, we can use an
Optimizer. One of the most famous optimizers is Adam. If you want to know
more about it, you can take a look at this link: Pytorch Adam. When we want
to create an instance of an optimizer, we should give it the tensors that it has
to optimize. Let’s define a simple model and make an optimizer.
from torch.optim import Adam

model = nn.Linear(4, 2)

optimizer = Adam(model.parameters())

4

https://docs.pytorch.org/docs/stable/generated/torch.optim.Adam.html

In the code above, we have a simple linear model. We gave the parameters of
that model to our optimizer. Optimizer will try to decrease the loss, using
the calculated gradients. So, for each step of optimization, we should do
something like below:
x = torch.tensor([

[1.0, 2.0, 3.0, 4.0],
[-1.0, -2.0, -3.0, -4.0],

]) # simple data
y_true = torch.tensor([0, 1]) # simple targe

for step in range(10):
optimizer.zero_grad() # clear the gradients

logits = model(x) # make a prediction

loss = loss_fn(logits, y_true) # calculate the loss
print(f"step {step}, loss: {loss.item()}")

loss.backward() # calculate the gradients with respect to
loss↪

optimizer.step() # optimize the weights

"""

output:
step 0, loss: 0.02135099470615387
step 1, loss: 0.020931493490934372
step 2, loss: 0.02052045427262783
step 3, loss: 0.020117828622460365
step 4, loss: 0.019723571836948395
step 5, loss: 0.019337747246026993
step 6, loss: 0.0189602542668581
step 7, loss: 0.01859092339873314
step 8, loss: 0.018229883164167404
step 9, loss: 0.01787690445780754
"""

As you can see in the code above, we defined a simple dataset and a sim-
ple target. We run our optimization steps 10 times. In each step, first,
we clear the previously calculated gradients using optimizer.zero_grad().
Then, we make a prediction and calculate the loss with the loss function
we have defined earlier (Cross Entropy Loss). After that, we calculate the
gradients using loss.backward(). And finally, we optimize the weights us-
ing optimizer.step(). As you can see in the output, the loss is decreasing in
each step, which means our optimization is working correctly.

5

Conclusion
In this tutorial, we have learned about training fundamentals. At first, we
explained how to calculate the gradient. Then, we introduced the loss function.
Finally, we programmed a simple optimization step to show how we can optimize
our model’s parameters.

6

	AutoGrad, loss function, and optimizer
	Introduction
	AutoGrad
	Loss function
	Optimizer
	Conclusion

