Data

Ramin Zarebidoky (LiterallyTheOne)

17 Aug 2025

Data

Load a dataset

We can work with all kinds of data in Pytorch. For this example, we are going
to work with the data called IRIS. Let’s load it together using a package called
scikit-learn. It is pre-installed on Google Colab, but if you want to install
it, you can use: pip install scikit-learn.

from sklearn.datasets import load_iris
iris = load_iris()

After we run the code above, it downloads the dataset, and all the data are in
a variable called iris. If we want to see what features it has, we can use the
code below:

print("feature names:")
print(iris.feature_names)

nmmnn

feature names:
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
o 'petal width (cm)']

mmnn

As you can see, it has 4 features:

« sepal length (cm)
« sepal width (cm)
o petal length (cm)
o petal width (cm)

https://archive.ics.uci.edu/dataset/53/iris

If we want to see what the target classes are, we can use the code below:

print("target names:")
print(iris.target_names)

nmmnn

target mames:

['setosa' 'versicolor' 'virginica']
mmnn

As it is shown, it has 3 classes, which are the names of the flowers:

e setosa
e versicolor
e virginica

To access the data, we can use iris.data, and to access the targets of each
sample, we can use iris.targets. Let’s see how many samples we have:

print ("Number of samples:", len(iris.data))

mnmn

Number of samples: 150

nmmnn

As you can see, it has 150 samples. Let’s show some of the samples using the
code below:

chosen_indexes = np.linspace(0, len(iris.data), 10, dtype=int,
< endpoint=False)

print("Chosen indexes:")

print (chosen_indexes)

print ()

print("10 sample of data:")
print(iris.datal[chosen_indexes])
print ()

print("10 sample of target:")
print(iris.target[chosen_indexes])

print ()

mmnn

Chosen indices:
[0 15 30 45 60 75 90 105 120 135]

10 samples of data:

[[5.1 3.5 1.4 0.2]
[6.7 4.4 1.5 0.4]
[4.8 3.1 1.6 0.2]
[4.8 3. 1.4 0.3]
[5. 2. 3.51.]
[6.6 3. 4.4 1.4]
[5.5 2.6 4.4 1.2]
[7.6 3. 6.6 2.1]
[6.9 3.2 5.7 2.3]
[7.7 3. 6.1 2.3]]

10 samples of target:
[ooo00111222]

mmnn

In the code above, I have chosen 10 samples of data using np.linspace. After
that, I printed the chosen indices.

Make the data ready for the model

In our hello world example, we had 3 samples of data with 8 features. Now,
for this dataset, we have 150 samples of data with 4 features. So, our job is
pretty much the same; we should only transform our dataset and targets to
Tensors. To do so, we can use the code below:

data = torch.tensor(iris.data).to(torch.float)
target = torch.tensor(iris.target)

Now, both the data and the target are in Tensors. Also, I changed the type of
data to float. For the next step, let’s prepare a model that can work with this
data.

class IRISClassifier(nn.Module):
def __init__(self):
super () .__init__Q)

self.layers = nn.Sequential(
nn.Linear(4, 16),
nn.Linear (16, 8),
nn.Linear(8, 3),

def forward(self, x):
return self.layers(x)

Figure 1: model-4-16-8-3

As you can see, I have created a model, called IRISClassifier, that has:

4 neurons for the input layer (because we have 4 input features)

e 16 neurons for the first hidden layer

o 8 neurons for the second hidden layer

e 3 neurons for the output layer (because we have to classify them into 3
classes)

So, let’s create an instance of that model and print it.

iris_classifier = IRISClassifier()
print(iris_classifier)

mmnn

IRISClassifier(
(layers): Sequential(
(0): Linear(in_features=4, out_features=16, bias=True)
(1) : Linear(in_features=16, out_features=8, bias=True)
(2): Linear(in_features=8, out_features=3, bias=True)
)
)

mmnn

Then, let’s feed the chosen indices of our data to it.

logits = iris_classifier(datal[chosen_indexes])

print(logits)

output

tensor([[0.7939, -0.1909, 0.1670],
[0.8980, -0.1740, 0.1619],
[0.7493, -0.1995, 0.1764],
[0.7270, -0.2024, 0.1689],
[0.7400, -0.2674, 0.1978],
[0.9774, -0.2836, 0.1797],
[0.8546, -0.2658, 0.2126],
[1.1355, -0.3332, 0.1992],
[1.0169, -0.2975, 0.2015],
[1.1078, -0.3330, 0.1814]], grad_fn=<AddmmBackward0>)

nmmnn

Now, we have an output. Let’s compare it with the targets that we have.

predictions = logits.argmax(dim=1)
for prediction, true_label in zip(predictions,
o target[chosen_indexes]):
print(prediction.item(), true_label.item())

mmnn

QAT O
WLV KR KROSO
SO O

In the code above, at first, I used argmax as we used in the Hello World example.
Then, zipped the predictions and the chosen targets to iterate through them.
After that, I printed them beside each other to see how close my predictions
are to the true labels. (.item function returns the value of a single tensor) As
you can see, all the prediction classes are 0. The reason behind that is that we
haven’t trained our model yet.

Dataset

The standard way of creating a dataset in PyTorch is by using
torch.utils.data.Dataset. In this way, data is more manageable and
can be dealt with in so many different ways. Let’s make a Dataset class for
our IRIS dataset.

class IRISDataset(Dataset):
def __init__(self, data, target):
super () .__init__Q)
self.data = data
self.target = target

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
data = torch.tensor(self.datal[idx]).to(torch.float)
target = torch.tensor(self.target[idx])
return data, target

In the code above, we have a class that is an abstract of Dataset, called
IRISDataset. As you can see, we gave data and target as arguments to
this class. When we implement a Dataset in PyTorch, we have to implement
__len__ and __getitem__ as well. The function __len__ returns the size of
our data (len(self.data)). Also, the function __getitem__ returns each data
and target with the given index. We should make sure that we transform our
data and target correctly before returning. To do so, I transformed data to a
float Tensor and target to a Tensor. This function is used when we want

to iterate over our dataset. Let’s load our data again and create an instance of
our IRISDataset.

iris = load_iris()
iris_dataset = IRISDataset(iris.data, iris.target)

Now, if we want to iterate over our dataset, we can use a simple for. For
example, in the code below, we iterate over our dataset and break the loop
after one element.

for one_data, one_target in iris_dataset:
print (one_data)
print (one_target)
break

mmnn

tensor([5.1000, 3.5000, 1.4000, 0.2000])
tensor(0.)

mmnn

DatalLoader

In PyTorch, we have a class called DataLoader. This class is super useful when
you want to train your model. Tt gives you so many options that you can control
pretty easily. Let’s create a DataLoader for our iris_dataset.

from torch.utils.data import Dataloader

iris_loader = Dataloader(iris_dataset, batch_size=10,
< shuffle=True)

In the code above, we created an instance of DataLoader and stored it in
iris_loader. We set the batch_size to 10. This means in each iteration,
our Dataloader, returns 10 samples of data. Also, we set suffle to true. This
argument shuffles the order of data every time, which is super useful in training.
Now, let’s make a loop that iterates over iris_loader, and shows only the first
element.

for batch_of_data, batch_of_target in iris_loader:
print (batch_of_data)
print(batch_of_target)
break

mmnn

tensor([[6.4000, 2.9000, 4.3000, 1.3000],
[6.4000, 3.1000, 5.5000, 1.8000],
[7.7000, 2.6000, 6.9000, 2.3000],
[4.8000, 3.4000, 1.9000, 0.2000],
[4.6000, 3.2000, 1.4000, 0.2000],
[6.7000, 3.1000, 4.4000, 1.4000],
[6.2000, 2.8000, 4.8000, 1.8000],
[6.1000, 3.0000, 4.6000, 1.4000],
[5.7000, 2.8000, 4.1000, 1.3000],
[5.4000, 3.9000, 1.3000, 0.4000]])

tensor([1., 2., 2., 0., 0., 1., 2., 1., 1., 0.])

mmnn

As you can see, there are 10 samples of data with their target. If you run this
loop multiple times, you will get different output every time. The reason behind
that is that we set the suffle to True in our data loader.

Train, Validation, and Test data
When we want to train our model, it is recommended to have 3 sets of data:

e Train: The data that the model is trained on

e Validation: The data that the model doesn’t train on, and it is being
used to evaluate the model after each epoch

e Test: The completely unseen data to evaluate our model after the training
is over.

There are so many different ways that we can split our data. One of the ways
is using random_split in pytorch.utils.data. To do so, we can use the code
below:

from torch.utils.data import random_split

gl = torch.Generator() .manual_seed(20)
train_data, val_data, test_data = random_split(iris_dataset,
- [0.7, 0.2, 0.1], g1

In the code above, at first, we create a seed. This seed, makes sure that every
time we use our code, we get the same train, validation, and test subsets of
our data. Then we split our data using random_split. As you can see, 70% of
the data goes for training, 20% goes for validation, and 10% goes for testing.
Now, let’s print the size of each subset to see if it works correctly.

print("train_data length:", len(train_data))
print("val_data length:", len(val_data))
print("test_data length:", len(test_data))

mmnn

output:

train_data length: 105
val_data length: 30
test_data length: 15

mmnn

As you can see, the data lengths are correct. Now, let’s create a DataLoader
for each of them.

train_loader = Dataloader(train_data, batch_size=10,

< shuffle=True)
val_loader = DatalLoader(val_data, batch_size=10, shuffle=False)
test_loader = Dataloader(test_data, batch_size=10, shuffle=False)

As you can see, now we have 3 dataloaders for each subset. Let’s write a for
loop to feed our training data to our model.

for batch_of_data, batch_of_target in train_loader:
logits = iris_classifier(batch_of_data)

predictions = logits.argmax(dim=1)
for prediction, true_label in zip(predictions,
< batch_of_target):
print(prediction.item(), true_label.item())
break

mnmn

NN O R M ORKORM RN
W VAORKAOR O R
QO DD

In the code above, we have a for loop that iterates over the train_loader.
We feed each batch_of_data to our model to give us the logits. Then, we
compare our predictions with the true labels. We put a break at the end of the
for loop, to only show the first result. Now, we have everything to train our
model.

Conclusion

In this tutorial, we have learned how to control data in PyTorch. We down-
loaded a traditional dataset. Then, we load that dataset as a PyTorch Dataset.
After that, we created a Dataloader for that Dataset. Finally, we split our
dataset into train, validation, and test. Now, we are ready to train our
model.

10

	Data
	Load a dataset
	Make the data ready for the model
	Dataset
	DataLoader
	Train, Validation, and Test data
	Conclusion

