
Fine-tuning

Ramin Zarebidoky (LiterallyTheOne)

20 Dec 2025

Fine-tuning
Introduction
In the previous tutorials, we learned about transfer learning and how to use
the advantage of a pre-trained model on our dataset. In this Tutorial, we learn
about how to apply fine-tuning and see the results. Also, we explain the concepts
of Underfitting and Overfitting and how to solve them. Finally, we make
more classification layer more generalized.

Fine-tuning
Fine-tuning is a technique in Deep Learning that we use to adapt our pre-
trained model with the new Dataset. In the previous tutorials, we worked with
transfer learning. Fine-tuning is pretty similar to transfer learning. The
only difference is that we unfreeze some of the last layers to our base_model
in order to train them. Here is an example:
base_model = MobileNetV2(include_top=False, input_shape=(224,

224, 3))↪

for layer in base_model.layers[:-4]:
layer.trainable = False

In the code above, we froze the starting layers of our base_model and left the
last 4 layers as trainable. Now, let’s print the base_model summary with
show_trainable=True like below:
print(base_model.summary(show_trainable=True))

"""
--------
output:

...

1



����������������������������������������������������������������������������
| block_16_project � (None, 7, 7, � 307,200 � block_16_dept…

� N �↪

� (Conv2D) � 320) � � �
�↪

����������������������������������������������������������������������������
| block_16_project… � (None, 7, 7, � 1,280 � block_16_proj…

� Y �↪

� (BatchNormalizat… � 320) � � �
�↪

����������������������������������������������������������������������������
� Conv_1 (Conv2D) � (None, 7, 7, � 409,600 � block_16_proj… �

Y �↪

� � 1280) � � �
�↪

����������������������������������������������������������������������������
� Conv_1_bn � (None, 7, 7, � 5,120 � Conv_1[0][0] �

Y �↪

� (BatchNormalizat… � 1280) � � �
�↪

����������������������������������������������������������������������������
� out_relu (ReLU) � (None, 7, 7, � 0 � Conv_1_bn[0][… �

- �↪

� � 1280) � � �
�↪

����������������������������������������������������������������������������

Total params: 2,257,984 (8.61 MB)
Trainable params: 412,800 (1.57 MB)
Non-trainable params: 1,845,184 (7.04 MB)

"""

As you can see, the last 4 layers, are trainable. The only thing that we should
do, is to train our model like before.

Underfitting
Underfitting happens when our model is not training well on our training
data. In other words, our model is not capable of learning the pattern of our
data. There are different reasons that might cause this phenomenon to happen.
One of the most important ones is that our model is too simple for the problem
that we have. To solve this problem, we should choose a more complex model
with more trainable layers.

Another reason behind Underfitting, is that we used too much Regulariza-

2



tion. For example, we have used so many Augmentation layers. To solve it,
we should just choose the suited Regularization techniques.

Sometimes, we haven’t chosen the correct input features required for under-
standing the pattern. For example, if we want to estimate the house price, and
we don’t have the size of the house, our model is not going to figure out the
pattern.

Overfitting
Overfitting happens when our model is doing well on training data but the
results on unseen data (Validation and Test) are not good. In other words,
model has understood the pattern so well (including the noise), but it fails
to generalize. There are some reasons that might be the cause of Overfitting.
One of the most important ones is that our model is too complex for the dataset
that we have. To fix this problem, we should choose a simpler model or lower
the number of trainable layers.

Another reason is that, we train our model for a long time. To solve this problem,
we said that we can use EarlyStopping.

One of the other reasons is that, we don’t use enough regularization. For exam-
ple, if our data is the images taken on the nature with so many different contrast
and brightness, it is expected that our unseen data is also has this differences.
So, if we want our model to learn how to deal with them, we should use the
respective Augmentation.

Make our classification layer more generalized
In the previous tutorials, we only used a Fully Connected layer for our Clas-
sification layer. Now, let’s change the Classification layer based on the
things that we learned. Here is an example:
model = keras.Sequential(

[
...,
layers.GlobalAveragePooling2D(),
layers.Dropout(0.5),
layers.Dense(128, activation="relu"),
layers.Dropout(0.5),
layers.Dense(4, activation="softmax"),

]
)

As you can see, in the code above, at first, I used a GlobalAveragePooling2D
instead of Flatten. It helps the model to be more generalized. Then I used a
dropout layer. This layer helps to have more generalization. Instead of using
only one layer, I have used 2 layers. The first layer has 128 neurons with the

3



activation of relu and the other layer has 4 neurons with the activation of
softmax in order to guess the classification.

Your turn
Now, Change the transfer learning to fine-tuning and make your classifica-
tion layer more generalized.

Conclusion
In this Tutorial, at first, we explained how we can apply fine-tuning. Then,
we described Underfitting and Overfitting and how to solve them. Finally,
we made our classification layer more generalized.

4


	Fine-tuning
	Introduction
	Fine-tuning
	Underfitting
	Overfitting
	Make our classification layer more generalized
	Your turn
	Conclusion


