Preprocessing and Data Augmentation

Ramin Zarebidoky (LiterallyTheOne)

02 Dec 2025

Preprocessing and Augmentation

Introduction

In the previous tutorial, we have learned about the basic layers used in CNNs.
In this tutorial, we are going to learn about preprocessing and augmentation
layers in Keras.

Preprocessing layers in Keras

Preprocessing

Data preprocessing is a set of steps that we take before feeding the data to
our model. These steps help us to have clean, consistent, and meaningful inputs.
Also, they help the model to have a better accuracy, convergence speed, and
generalization. When we were loading our dataset, we used two transformations:
Resize and ToTensor. These two functions were related to the PyTorch and
we were using them on the ImageFolder. Now, we are going to learn about
some preprocessing layers in Keras.

Resizing

Resizing layer is a layer that resizes its input to match the given size. Here is
an example that we resized an image with the size of 1920 x 1080 to 224 x 224.

from keras.layers import Resizing

resizing_ layer = Resizing(224, 224)

input_image = np.random.randint(0, 256, (1, 1920, 1080, 3))
result_image = resizing_layer (input_image)

print(f"Input's shape: {input_image.shapel}")
print(f"Result's shape: {result_image.shapel}")


https://keras.io/api/layers/preprocessing_layers/

mmnn

Input's shape: (1, 1920, 1080, 3)
Result's shape: torch.Size([1, 224, 224, 3])

mmnn

Rescaling

Rescaling layer is a layer that rescales its input to the given scale. In the

example below, we have made a Rescaling layer with the scale of ﬁ

from keras.layers import Rescaling

rescaling layer = Rescaling(l / 255)

input_image = np.random.randint(0, 256, (1, 224, 224, 3))
result_image = rescaling_layer (input_image)

print (f"Input's max: {input_image.max()}")
print(f"Input's min: {input_image.min()}")
print(f"Result's max: {result_image.max()}")
print (f"Result's min: {result_image.min()}")

mnin

Input's maxz: 255
Input's min: O

Result's maxz: 1.0
Result's min: 0.0

mmnn

Specific model preprocessing

Each model has its own preprocessing procedure. In Keras we can load and
use them. Here is an example of the preprocessing for MobileNetV2.

from keras.applications.mobilenet_v2 import preprocess_input

input_image = np.random.randint(0, 256, (1, 224, 224, 3))



result_image = preprocess_input(input_image)

print (f"Input's max: {input_image.max()}")
print(f"Input's min: {input_image.min()}")

print (f"Result's max:
print (f"Result's min:

mnmn

Input's maz: 255
Input's min: O
Result's maxz: 1.0
Result's min: -1.0

mmnn

As you can see, in the example above, the input is mapped to the range of
[-1.0,1.0]. This is the way MobileNetV2 expects its input to be. If we want
to use this preprocessing procedure in our model layers, we can use a layer
called Lambda. Lambda takes a function, like preprocess_input, and turns it
to a layer. Here is an example of how we can achieve that.

{result_image.max()}")
{result_image.min()}")

from keras.layers import Lambda

input_image = np.random.randint(0, 256, (1, 224, 224, 3))
input_image = np.array(input_image, dtype=float)

preprocessing_layer =

result_image = preprocessing_layer (input_image)

Lambda (preprocess_input)

print (f"Input's max: {input_image.max()}")
print(f"Input's min: {input_image.min()}")

print (f"Result's max:
print (f"Result's min:

mmnn

Input's maxz: 255.0
Input's min: 0.0
Result's maz: 1.0

{result_image.max()}")
{result_image.min()}")



Result's min: -1.0
mnn

Augmentation

Data Augmentation is a technique in machine learning that artificially ex-
pands our training dataset by applying different transformations. Data Aug-
mentation is extremely useful when we don’t have enough data or our data is
not balanced. It helps us with the generalization and prevents the model from
over-fitting. We have so many different augmentation techniques for different
use-cases. Let’s get to know how to use some of them in Keras. You can see
the output of all the examples in this notebook

RandomPFlip

RandomFlip, technically, has a 50 chance to flip its input in the given mode.
Modes can be:

e horizontal
e vertical
e horizontal and vertical

Here is an example that only flips horizontally:

from keras.layers import RandomFlip
random_flip_layer = RandomFlip("horizontal")

e The most common rotation is horizontal
e Use it when left and right rotation doesn’t matter

RandomRotation

RandomRotation rotates its input with the given factor. The range of the rota-
tion would be: [—factor x 7, + factor = ]
For example, if we put the factor to 0.2, it would rotate the input in the range
of

[-0.2 % 7, 40.2 % m] = [-0.2 % 180°,0.2 % 180°] = | [—36°, 36°]

Here is an example of this layer:

from keras.layers import RandomRotation
random_rotation_layer = RandomRotation(0.2)

e Make your model robust to the rotation


https://github.com/LiterallyTheOne/deep-learning-with-keras/blob/main/src/6-preprocessing-and-augmentation/a2-augmentation.ipynb

RandomZoom

RandomZoom zooms in or out respect to the height_factor and width_factor.
Here is an example of this layer:

from keras.layers import RandomZoom
random_zoom_layer = RandomZoom(0.4, 0.2)

e Helps the model to handle scale changes
o Super effective in classification problems

RandomTranslation

RandomZoom moves the image respect to the height_factor and width_factor.
Here is an example of this layer:

from keras.layers import RandomTranslation

random_translation_layer = RandomTranslation(0.2, 0.2)

e Simulates small camera movements
e It is super important for the tasks that position of the object
doesn’t matter

RandomContrast

RandomContrast changes the contrast respect to the given factor. Here is an
example of this layer:

from keras.layers import RandomContrast
random_contrast_layer = RandomContrast(0.4)

e Helps us with the different lightning setups
o Useful in outdoor scenes and natural environments

RandomBrightness

RandomBrightness changes the brightness respect to the given factor. Here is
an example of this layer:

from keras.layers import RandomBrightness
random_brightness_layer = RandomBrightness(0.1)

e Helps us with the different lightning environments
¢ Specially data’s taken in the different times of the day in the nature



RandomCrop

RandomCrop crops to the given height and width randomly. Here is an example
of this layer:

from keras.layers import RandomCrop
random_crop_layer = RandomCrop (224, 224)

¢ Simulates random object placements
o Extremely useful in large-scale training

Add preprocessing and augmentation layers to our model

We should add our preprocessing and augmentation layers before feeding our
data to the model. Here is an example:

mmnn

augmentation_layers = keras.Sequential (
[
layers.RandomFlip ("horizontal"),
layers.RandomFlip ("vertical"),
layers.RandomZoom(0.1, 0.1),
layers.RandomTranslation(0.05, 0.05),
layers.RandomRotation(0.05),

model = keras.Sequential(
[

layers. Input (shape=(3, 224, 224)),
layers.Permute((2, 3, 1)),
layers.Rescaling (1.0 / 255),
augmentation_layers,
layers.Lambda (preprocess_input),
base_model,
layers.Flatten(),
layers.Dense(4, activation="softmaz"),

Model: "sequential_ 5"

Layer (type) Output Shape
« Param #



permute_2 (Permute) (None, 224, 224, 3)
o 0

rescaling (Rescaling) (None, 224, 224, 3)
o 0

sequenttal_4 (Sequential) (None, 224, 224, 3)
- 0

lambda (Lambda) (None, 224, 224, 3)
o 0

mobilenetv2_1.00_224 (None, 7, 7, 1280)
o 2,257,984

(Functional)

flatten_2 (Flatten) (None, 62720)

o 0

dense_2 (Dense) (None, 4)

o 250,884

Total params: 2,508,868 (9.57 MB)
Trainable params: 250,884 (980.02 KB)
Non-trainable params: 2,257,984 (8.61 MB)

nmmnn

In the example above, we have defined a Sequential to add our augmentation
layers. Our augmentation layers consists of filliping, zooming, translation, and
rotation. We also added the preprocess unit and rescaling.

We should always consider not over stack these layers. In this example, we only
wanted to show you how we can add multiple augmentation layers. It might be
too much for our model, which right now doesn’t have so many parameters to
learn.

Your turn

Now, choose the correct preprocessing and augmentation for your model and
dataset and see the outputs.



Conclusion

In this tutorial, we have learned about preprocessing and augmentation. First,
we explained about preprocessing and how to use them in Keras. Then, we
explored three different preprocessors. After that, we explained about the data
augmentations and their use-cases. We introduced some of the most important
augmentation layers. Finally, we learned how to add these layers in our model.



	Preprocessing and Augmentation
	Introduction
	Preprocessing
	Resizing
	Rescaling
	Specific model preprocessing
	Augmentation
	RandomFlip
	RandomRotation
	RandomZoom
	RandomTranslation
	RandomContrast
	RandomBrightness
	RandomCrop
	Add preprocessing and augmentation layers to our model
	Your turn
	Conclusion


