
Convolutional models

Ramin Zarebidoky (LiterallyTheOne)

26 Nov 2025

Convolutional models
Introduction
In the previous tutorial, we learned about different loss functions and optimizers.
In this tutorial, we will learn more about convolutional models that we were
using in the previous tutorials.

Convolution
Convolution is an operation in which we slide a smaller matrix (kernel) over a
bigger matrix and calculate the weighted sum. Let’s explain its concepts using
an example. In our example, we have a 6 × 6 image, and our kernel is 3 × 3, like
below:
image_size = (6, 6)
kernel_size = (3, 3)

image = np.arange(image_size[0] *
image_size[1]).reshape(image_size)↪

kernel = np.ones(kernel_size) / (kernel_size[0] * kernel_size[1])

print("image:")
print(image)
print("kernel:")
print(kernel)

"""

output:

image:
[[0 1 2 3 4 5]
[6 7 8 9 10 11]
[12 13 14 15 16 17]

1

[18 19 20 21 22 23]
[24 25 26 27 28 29]
[30 31 32 33 34 35]]

kernel:
[[0.11111111 0.11111111 0.11111111]
[0.11111111 0.11111111 0.11111111]
[0.11111111 0.11111111 0.11111111]]

"""

As you can see, our image is the numbers from 0 to 35, and our kernel is working
as an average kernel. If we apply convolution, we are going to have a result like
below:

Figure 1: conv

As you can see in the GIF above, the kernel is being slid on our image, and we
are getting the average of each $ 3 ×3$ block as an output. Let’s calculate the
first block.

0 × 1
9 + 1 × 1

9 + 2 × 1
9 + 6 × 1

9 + 7 × 1
9 + 8 × 1

9 + 12 × 1
9 + 13 × 1

9 + 14 × 1
9 = 7

As you can see, the calculations have the same results as the code. Also, our
input’s shape is $ 6 ×6$, but our output’s shape is $ 4 ×4$. The reason behind
that is our kernel is $ 3 ×3$. So, we can only slide it 4 times on our input. For
now, we can calculate it like below:

𝑊𝑜𝑢𝑡 = (𝑊𝑖𝑛 − 𝐾𝑤) + 1

2

𝐻𝑜𝑢𝑡 = (𝐻𝑖𝑛 − 𝐾ℎ) + 1
• W: Width
• H: Height
• K: Kernel

Now, let’s talk about 3 important things in Convolution. If you want to
experience different convolutions with different options, you can use this code:
conv_gif.py.

Stride

Right now, we are sliding our kernel 1 square at a time. If we decide to slide it
with a number different from one, we can use stride.

Figure 2: conv stride

As you can see in the GIF above, we put the stride to 2. So, it slides 2 squares
instead of 1 in both x and y axis. As a result, our output’s shape becomes half
of what it was. We can calculate the output’s shape as below:

𝑊𝑜𝑢𝑡 = (𝑊𝑖𝑛 − 𝐾𝑤)
𝑆𝑤

+ 1

𝐻𝑜𝑢𝑡 = (𝐻𝑖𝑛 − 𝐾ℎ)
𝑆ℎ

+ 1

• W: Width
• H: Height
• K: Kernel
• S: Stride

3

https://github.com/LiterallyTheOne/deep-learning-with-keras/blob/master/src/5-generalization/conv_gif.py

padding

Padding is a technique that we use to fill the surrounding of the input with
some values. The most common value for padding is 0, which is called zero
padding. The main reason for that is to prevent our image from being shrunk
after some convolutions. In the previous example, you saw that the image with
$ 6 ×6$ becomes $ 4 ×4$. If the input shape and output shape are the same,
it is called zero-padding.

Figure 3: conv pad 1

As you can see in the GIF above, we have added zeros to the surroundings of
our input. As a result, our output has the same shape as our input ($ 6 ×6$).
We can calculate the output size as below:

𝑊𝑜𝑢𝑡 = (𝑊𝑖𝑛 + 2𝑃𝑤 − 𝐾𝑤)
𝑆𝑤

+ 1

𝐻𝑜𝑢𝑡 = (𝐻𝑖𝑛 + 2𝑃ℎ − 𝐾ℎ)
𝑆ℎ

+ 1

• W: Width
• H: Height
• K: Kernel
• S: Stride
• P: Padding

Dilation

Dilation is a technique that we use to make the kernel bigger to cover a bigger
area. To do so, we insert gaps between our kernel. For example, if our kernel is
like below:

4

⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

After dilation=2, it becomes like below:

⎡
⎢
⎢
⎢
⎣

1 0 2 0 3
0 0 0 0 0
4 0 5 0 6
0 0 0 0 0
7 0 8 0 9

⎤
⎥
⎥
⎥
⎦

Figure 4: conv dilation 2

As you can see in the GIF above, we have dilation=2, so our kernel becomes
$ 5 ×5$. We can calculate the output shape with the formula below:

𝑊𝑜𝑢𝑡 = (𝑊𝑖𝑛 + 2𝑃𝑤 − 𝐷𝑤 × (𝐾𝑤 − 1) − 1)
𝑆𝑤

+ 1

𝐻𝑜𝑢𝑡 = (𝐻𝑖𝑛 + 2𝑃ℎ − 𝐷ℎ × (𝐾ℎ − 1) − 1)
𝑆ℎ

+ 1

• W: Width
• H: Height
• K: Kernel
• S: Stride
• P: Padding
• D: Dilation

5

Convolution layer
Earlier, we learned how convolution works. Now, let’s talk about how to use
it in Keras. We can define a Convolution layer in Keras like below:
from keras.layers import Conv2D

conv_1 = Conv2D(
filters=64,
kernel_size=(3, 3),
padding="same",
strides=(1, 1),
dilation_rate=(1, 1),

)

In the code above, we have defined a convolution layer. For its output, it
creates 64 channels. Also, it has a $ 3 ×3$ kernel. As you can see, we have
control over stride, padding, and dilation. Now, let’s feed our loaded images
to conv_1, to see what happens.
for images, labels in train_loader:

images = Permute((2, 3, 1))(images)
result = conv_1(images)
print(f"images shape: {images.shape}")
print(f"result shape: {result.shape}")
break

"""

output:
images shape: torch.Size([12, 224, 224, 3])
result shape: torch.Size([12, 224, 224, 64])
"""

The results above show that the width and height of our inputs and outputs
are the same. The reason behind that is that we put padding to same. Also,
we have 64 channels for the results as expected. When we train a convolution
layer, this kernels would be trained.

Pooling
Pooling is a downsampling operation. It is mostly being used after feature
extraction layers. For example, after a series of convolution layers. It is basi-
cally reduces the spatial dimensions (height, width) while keeping the important
information.

We are using a pooling layer mostly because:

• Compress information

6

• Avoid overfitting (which we are going to discuss in the upcoming tutorials)
• Achieving Translation Invariance
• Increase Receptive Field

The operation of Pooling is pretty similar to Convolution.
We have a specific Kernel that we are sliding it over a bigger matrix. The only
difference between them, is that this Kernel is not trainable. Let’s get more
familiar with two important Pooling layers, Average Pooling and ** Max
pooling.

Average Pooling

Average pooling calculates the average of each window. Here is an example
of defining and using an Average pooling layer in Keras.
from keras.layers import AveragePooling2D

avg_pooing_layer = AveragePooling2D((2, 2), strides=1)

a = np.arange(32, dtype=float).reshape(1, 4, 4, 2)

result = avg_pooing_layer(a).cpu().numpy()

print("differences in shapes")
print(a.shape)
print(result.shape)
print("-" * 20)

print("1st channel")
print(a[0, :, :, 0])
print("-" * 20)

print("second channel")
print(a[0, :, :, 1])
print("-" * 20)

print("result of the 1st channel")
print(result[0, :, :, 0])
print("-" * 20)

print("result of the 2nd channel")
print(result[0, :, :, 1])
print("-" * 20)

"""

output:

7

differences in shapes
(1, 4, 4, 2)
(1, 3, 3, 2)

1st channel
[[0. 2. 4. 6.]
[8. 10. 12. 14.]
[16. 18. 20. 22.]
[24. 26. 28. 30.]]

second channel
[[1. 3. 5. 7.]
[9. 11. 13. 15.]
[17. 19. 21. 23.]
[25. 27. 29. 31.]]

result of the 1st channel
[[5. 7. 9.]
[13. 15. 17.]
[21. 23. 25.]]

result of the 2nd channel
[[6. 8. 10.]
[14. 16. 18.]
[22. 24. 26.]]

"""

As you can see, in the code above, we have defined an Average Pooling Layer
with the pool_size of (2, 2) and made sure that our stride is set to 1. After
that, we made an input matrix with the size of $ 4 ×4$ that has 1 batch and 2
channels. The values of this matrix is filled by the numbers in range of [0, 31].
Then, we fed that input to our Average pooling Layer and printed the results.
As you can see, in the result section, we can see the differences of the input and
the output. First, let’s examine the different shapes. The original shape is (1,
4, 4, 2) but the output’s shape is (1, 3, 3, 2). The reason behind that is
that we can fit 3 2 × 2 window on a 4 × 4 matrix. As you can see, we have
printed each channel and the output is the average over the 2 × 2 window.

There is another common Pooling layer is being used as the last layer of our
convolutional model (Instead of Flatten) is Global Average Pooling. This
layer, calculates the average of the whole channel. Here is an example of Global
Average Pooling.

8

from keras.layers import GlobalAveragePooling2D

avg_pooing_layer = GlobalAveragePooling2D()

a = np.arange(32, dtype=float).reshape(1, 4, 4, 2)

result = avg_pooing_layer(a).cpu().numpy()

print("difference in shapes")
print(a.shape)
print(result.shape)
print("-" * 20)

print("1st channel")
print(a[0, :, :, 0])
print("-" * 20)

print("second channel")
print(a[0, :, :, 1])
print("-" * 20)

print("result")
print(result)
print("-" * 20)

"""

output:

difference in shapes
(1, 4, 4, 2)
(1, 2)

1st channel
[[0. 2. 4. 6.]
[8. 10. 12. 14.]
[16. 18. 20. 22.]
[24. 26. 28. 30.]]

second channel
[[1. 3. 5. 7.]
[9. 11. 13. 15.]
[17. 19. 21. 23.]
[25. 27. 29. 31.]]

result

9

[[15. 16.]]

"""

As you can see, in the code above, GlobalAveragePooling2D doesn’t require a
Kernel. Because, it would apply the average on the whole channel. As it shown
in the outputs, the result shape is (1, 2) (batch_size and channel). Also, you
can see that the average of each channel is calculated.

Max pooling

Max Pooling calculate the maximum of each window. Here is an example of
Max Pooling.
from keras.layers import MaxPool2D

max_pooling_layer = MaxPool2D((2, 2), strides=1)

a = np.arange(32, dtype=float).reshape(1, 4, 4, 2)

result = max_pooling_layer(a).cpu().numpy()

print("differences in shapes")
print(a.shape)
print(result.shape)
print("-" * 20)

print("1st channel")
print(a[0, :, :, 0])
print("-" * 20)

print("second channel")
print(a[0, :, :, 1])
print("-" * 20)

print("result of the 1st channel")
print(result[0, :, :, 0])
print("-" * 20)

print("result of the 2nd channel")
print(result[0, :, :, 1])
print("-" * 20)

"""

output:

10

differences in shapes
(1, 4, 4, 2)
(1, 3, 3, 2)

1st channel
[[0. 2. 4. 6.]
[8. 10. 12. 14.]
[16. 18. 20. 22.]
[24. 26. 28. 30.]]

second channel
[[1. 3. 5. 7.]
[9. 11. 13. 15.]
[17. 19. 21. 23.]
[25. 27. 29. 31.]]

result of the 1st channel
[[10. 12. 14.]
[18. 20. 22.]
[26. 28. 30.]]

result of the 2nd channel
[[11. 13. 15.]
[19. 21. 23.]
[27. 29. 31.]]

"""

As you can see, in the code above, the syntax of Max Pooling is pretty similar
to Average Pooling. The Kernel of our Max Pooling layer is also 2 × 2 so
the output shape would be the same as Average pooling. As you can see, in
the output, the maximum of each window is calculated.

We have Global Maximum Pooling as well. Here is an example:
max_pooling_layer = GlobalMaxPooling2D()

a = np.arange(32, dtype=float).reshape(1, 4, 4, 2)

result = max_pooling_layer(a).cpu().numpy()

print("difference in shapes")
print(a.shape)
print(result.shape)
print("-" * 20)

11

print("1st channel")
print(a[0, :, :, 0])
print("-" * 20)

print("second channel")
print(a[0, :, :, 1])
print("-" * 20)

print("result")
print(result)
print("-" * 20)

"""

output:

difference in shapes
(1, 4, 4, 2)
(1, 2)

1st channel
[[0. 2. 4. 6.]
[8. 10. 12. 14.]
[16. 18. 20. 22.]
[24. 26. 28. 30.]]

second channel
[[1. 3. 5. 7.]
[9. 11. 13. 15.]
[17. 19. 21. 23.]
[25. 27. 29. 31.]]

result
[[30. 31.]]

"""

As you can see, the maximum of each channel is calculated

Activation Function
In a Neural Networks, Activation functions removes the linearity of the con-
nections. Without an Activation Function, the model is only a linear trans-
formation. It helps the model to learn complex relationships. In Keras, we
can give an activation function to the layer. This was the method that we were
using in the previous tutorials.

12

We have so many different Activation functions. Here are one of the most
used ones.

ReLU

ReLU stands for Rectified Linear Unit. It is one of the most used activation
functions in Deep Learning. The logic behind that is pretty simple. It only
changes the negative values to 0. Here is its formula:

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

Figure 5: ReLU

You can access the ReLU function like below:
from keras.activations import relu

Tanh

Hyperbolic Tangent function is another super useful Activation Func-
tions. It maps its input into the range of (−1, 1)

13

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Figure 6: Tanh

You can access the Tanh function like below:
from keras.activations import tanh

Sigmoid

Sigmoid is another function that is mostly used in binary classification. It
would map the input into the range of (0, 1).

𝜎(𝑥) = 1
1 + 𝑒−𝑥

You can access the Sigmoid function like below:
from keras.activations import sigmoid

14

Figure 7: Sigmoid

15

Softmax

Softmax is mostly used as the Activation function of the final layer of clas-
sification. It would change the logits to the probability.

Softmax(𝑧𝑖) = 𝑒𝑧𝑖

∑𝑗 𝑒𝑧𝑗

You can access the Softmax function like below:
from keras.activations import softmax

Dropout layer
Dropout layer is a technique that is used to avoid overfitting and achieve
regularization. It accepts a percentage as its input. In each training step, it
would set that percentage of neurons to zero. This helps the other neurons to
get included in the training procedure.

Here is an example of the usage of the Dropout layer.
from keras import Sequential
from keras.layers import Dropout, Dense, Input

model = Sequential(
[

Input(shape=(1024,)),
Dropout(0.2),
Dense(512, activation="relu"),
Dropout(0.2),
Dense(128, activation="relu"),
Dropout(0.2),
Dense(10, activation="relu"),

]
)

LeNet
Now that we have learned about the layers that are mostly used in Convolu-
tional Neural Networks, let’s build some of them from scratch. One of the
most effective and simple models is LeNet. LeNet is designed to recognize
the handwritten digits on grayscale 28 × 28 images. Here is the architecture of
LeNet.

Image Source: https://en.wikipedia.org/wiki/LeNet#/media/File:Comparison_image_neural_networks.svg

Here is the link to the implementation of LeNet part by part in Keras.

16

https://github.com/LiterallyTheOne/deep-learning-with-keras/blob/main/src/5-convolutional-models/a6_LeNet.ipynb

Figure 8: LeNet

17

AlexNet
AlexNet is another important Convolutional Neural Network that is being
recognized as the beginning of the Deep Learning. It is officially designed to
the classification task in a dataset called ImageNet. ImageNet is a huge
dataset with 1000 classes. The images of this dataset is in RGB format and
the shape of them are 224 × 224. Here is the architecture of AlexNet.

Source: https://en.wikipedia.org/wiki/LeNet#/media/File:Comparison_image_neural_networks.svg

Here is the link to the implementation of LeNet part by part in Keras.

Your turn
Now, test the AlexNet on your dataset.

Conclusion
In this tutorial, we learned the basic layers used in a CNN. First, we started
with the Convolution. We explained how it works alongside with its 3 argu-
ments: stride, padding, dilation. Second, we learned about Pooling layers.
We discussed the reason behind it, and we explained about Average Pool-
ing and Max Pooling. Third, we learned about Activation functions. We
used to work with ReLU and SoftMax. Now, we are introduced to two other
Activation Functions, Tanh and Sigmoid. Forth, we explained about the
Dropout layer and why it is important. Finally, we implemented two impor-
tant CNNs, LeNet and AlexNet, from scratch.

18

https://github.com/LiterallyTheOne/deep-learning-with-keras/blob/main/src/5-convolutional-models/a7_AlexNet.ipynb

Figure 9: AlexNet

19

	Convolutional models
	Introduction
	Convolution
	Stride
	padding
	Dilation

	Convolution layer
	Pooling
	Average Pooling
	Max pooling

	Activation Function
	ReLU
	Tanh
	Sigmoid
	Softmax

	Dropout layer
	LeNet
	AlexNet
	Your turn
	Conclusion

