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Loss and Optimization

Introduction

In the previous tutorial, we learned about plotting and Tensorboard. Here
is the summary of the code that we have implemented so far.

import os
os.environ["KERAS_BACKEND"] = "torch"

R [ Mg Jj=————————————=——==
from pathlib import Path

from matplotlib import pyplot as plt

import torch
from torch.utils.data import random_split, Dataloader

from torchvision.datasets import ImageFolder
from torchvision import transforms

import keras

from keras import layers

from keras.applications import MobileNetV2

import kagglehub

import datetime

A e [ Load the data J--—-———————————————-

path = kagglehub.dataset_download(J
o "balabaskar/tom-and-jerry-image-classification")



data_path = Path(path) / "tom_and_jerry/tom_and_jerry"

trs = transforms.Compose(

L
transforms.Resize ((224, 224)),
transforms.ToTensor (),

all_data = ImageFolder(data_path, transform=trs)

gl = torch.Generator() .manual_seed(20)
train_data, val_data, test_data = random_split(all_data, [0.7,
- 0.2, 0.11, gi)

train_loader = Dataloader(train_data, batch_size=12,

< shuffle=True)
val_loader = Dataloader(val_data, batch_size=12, shuffle=False)
test_loader = Dataloader(test_data, batch_size=12, shuffle=False)

[ S———e—messessessess [ Make the model J----——————————————-
base_model = MobileNetV2(include_top=False, input_shape=(224,
s 224, 3))

base_model.trainable = False

model = keras.Sequential(

[
layers. Input (shape=(3, 224, 224)),
layers.Permute((2, 3, 1)),
base_model,
layers.Flatten(),
layers.Dense(4, activation="softmax"),
]

model . compile (
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],

log_dir = "logs/fit/" +
o datetime.datetime.now() .strftime ("%Y%m%d-%H%AM%AS")



tensorboard_callback =
< keras.callbacks.TensorBoard(log_dir=log_dir)

history = model.fit(
train_loader,
epochs=5,
validation_data=val_loader,
callbacks=[tensorboard_callback],

loss, accuracy = model.evaluate(test_loader)

print("loss:", loss)

print("accuracy:", accuracy)

# [ Plot the training procedure
T

plt.figure()

plt.title("loss")
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.legend(["loss", "val_loss"])

plt.figure()

plt.title("accuracy")
plt.plot(history.history["accuracy"])
plt.plot(history.history(["val_accuracy"])
plt.legend(["accuracy", "val_accuracy"])

plt.show()

In this tutorial, we are going to learn more about loss functions and optimiz-
ers in Keras.

Your turn

Conclusion
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