Loss and Optimization

Ramin Zarebidoky (LiterallyTheOne)

20 Nov 2025

Loss and Optimization

Introduction

In the previous tutorial, we learned about plotting and Tensorboard. Here
is the summary of the code that we have implemented so far.

import os
os.environ["KERAS_BACKEND"] = "torch"

R [Mg Jj=————————————=——==
from pathlib import Path

from matplotlib import pyplot as plt

import torch
from torch.utils.data import random_split, Dataloader

from torchvision.datasets import ImageFolder
from torchvision import transforms

import keras

from keras import layers

from keras.applications import MobileNetV2

import kagglehub

import datetime

A e [Load the data J--—-———————————————-

path = kagglehub.dataset_download(J
o "balabaskar/tom-and-jerry-image-classification")

data_path = Path(path) / "tom_and_jerry/tom_and_jerry"

trs = transforms.Compose(

L
transforms.Resize ((224, 224)),
transforms.ToTensor (),

all_data = ImageFolder(data_path, transform=trs)

gl = torch.Generator() .manual_seed(20)
train_data, val_data, test_data = random_split(all_data, [0.7,
- 0.2, 0.11, gi)

train_loader = Dataloader(train_data, batch_size=12,

< shuffle=True)
val_loader = Dataloader(val_data, batch_size=12, shuffle=False)
test_loader = Dataloader(test_data, batch_size=12, shuffle=False)

[S———e—messessessess [Make the model J----——————————————-
base_model = MobileNetV2(include_top=False, input_shape=(224,
s 224, 3))

base_model.trainable = False

model = keras.Sequential(

[
layers. Input (shape=(3, 224, 224)),
layers.Permute((2, 3, 1)),
base_model,
layers.Flatten(),
layers.Dense(4, activation="softmax"),
]

model . compile (
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],

log_dir = "logs/fit/" +
o datetime.datetime.now() .strftime ("%Y%m%d-%H%AM%AS")

tensorboard_callback =
< keras.callbacks.TensorBoard(log_dir=log_dir)

history = model.fit(
train_loader,
epochs=5,
validation_data=val_loader,
callbacks=[tensorboard_callback],

loss, accuracy = model.evaluate(test_loader)

print("loss:", loss)

print("accuracy:", accuracy)

[Plot the training procedure
T

plt.figure()

plt.title("loss")
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.legend(["loss", "val_loss"])

plt.figure()

plt.title("accuracy")
plt.plot(history.history["accuracy"])
plt.plot(history.history(["val_accuracy"])
plt.legend(["accuracy", "val_accuracy"])

plt.show()

In this tutorial, we are going to learn more about loss functions and optimiz-
ers in Keras.

Your turn

Conclusion

	Loss and Optimization
	Introduction
	Your turn
	Conclusion

