Plot and Tensorboard

Ramin Zarebidoky (LiterallyTheOne)

18 Nov 2025

Plot and TensorBoard

Introduction

In the previous tutorial, we learned about model and Transfer Learning.
Here is the summary of the code that we have implemented so far.

import os

os.environ["KERAS BACKEND"] = "torch"
from pathlib import Path

from matplotlib import pyplot as plt

import torch
from torch.utils.data import random_split, Dataloader

from torchvision.datasets import ImageFolder
from torchvision import transforms

import keras

from keras import layers

from keras.applications import MobileNetV2
import kagglehub

import datetime

Load the Dataset

path = kagglehub.dataset_download(
o "balabaskar/tom-and-jerry-image-classification")

data_path = Path(path) / "tom_and_jerry/tom_and_jerry"

trs = transforms.Compose(

[
transforms.Resize ((224, 224)),
transforms.ToTensor (),

all_data = ImageFolder(data_path, transform=trs)
gl = torch.Generator() .manual_seed(20)
train_data, val_data, test_data = random_split(all_data, [0.7,
- 0.2, 0.11, gl)
train_loader = Dataloader(train_data, batch_size=12,
< shuffle=True)
val_loader = Dataloader(val_data, batch_size=12, shuffle=False)
test_loader = Dataloader(test_data, batch_size=12, shuffle=False)
Create the model

base_model = MobileNetV2(include_top=False, input_shape=(224,
o 224, 3))

base_model.trainable = False

model = keras.Sequential(

[
layers. Input (shape=(3, 224, 224)),
layers.Permute((2, 3, 1)),
base_model,
layers.Flatten(),
layers.Dense(4, activation="softmax"),
]

model . compile (
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],

Train the model

history = model.fit(train_loader, epochs=5,
<, validation_data=val_loader)

Evaluate the model
loss, accuracy = model.evaluate(test_loader)

print("loss:", loss)
print("accuracy:", accuracy)

As you can see, in the code above, when we were training our model using .fit
function, we were storing its result in a variable called history. In this tutorial,
we will learn more about history and how to plot its results. Also, we will learn
about a very powerful tool for plotting and seeing the results during training,
called TensorBoard.

Plot the training history
First, let’s print the history to see what is inside it.
print (history)

mmnn

<keras.src.callbacks.history.History object at Oxl2de7e300>

mmnn

As you can see, we have a Callback with the name of History. The History
object, saves the information about the training parameters, in an attribute
called params.

print (history.params)

mnmn

{'verbose': 'auto', 'epochs': 5, 'steps': 320}

mmnn

As you can see, we have trained our model for 5 epochs and each epoch contained
320 steps (mini-batches). Also, History saves the loss and the given metrics
(in our case: Accuracy) as well, in an attribute called history.

print (history.history)

mmnn

output:

{'accuracy': [0.41955670714378357, 0.5418513417243958,

o 0.5614081025123596, 0.5921773314476013, 0.6033898591995239],
"loss': [8.836509704589844, 7.081783294677734,

o 6.813899517059326, 6.346843242645264, 6.222221374511719],
'wal_accuracy': [0.540145993232727, 0.5246350169181824,

o 0.5729926824569702, 0.6076642274856567, 0.5894160866737366],
'val_loss': [7.019584655761719, 7.262048721313477,

o 6.537136554718018, 6.103211879730225, 6.454712390899658]}

mmnn

As shown, now we can access to loss and accuracy of training and validation
in each epoch. So, let’s plot the loss and accuracy separately.

plt.figure()

plt.title("loss")
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.legend(["loss", "val_loss"])

plt.figure()

plt.title("accuracy")
plt.plot(history.history["accuracy"])
plt.plot(history.history["val_accuracy"])
plt.legend(["accuracy", "val_accuracy"])

loss

— loss

— val_loss
8.5 1

8.0 +

7.5 1

.09 —

6.5

6.0 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4500 —— accuracy A —
’ —— val_accuracy / ~—

0.575
0.550
0.525
0.500 -
0.475 7
0.450

0.425

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

As you can see, we have trained our model for 5 epochs. For training subset, our
loss and accuracy were improving (blue line). But for the validation subset,
we had some ups and downs which is natural. We are going to learn how to
analyze them in the upcoming tutorials.

Source: https://www.tensorflow.org/api docs/python/tf/keras/callbacks/History

TensorBoard

If we want to plot our results using History callback from the output of the
fit module, we have to wait until the training is done. So, we can’t have live
plots and data to analyze our training procedure. One of the ways that we can
solve this problem is by logging the data during training in our hard drive. Then,
use a Ul to load that log and analyze it. That’s exactly what TensorBoard
does.

TensorBoard is an open-source visualization toolkit for machine learning ex-
periments. It has its own logging standard and visualization dashboard. Any-
time that we log something in our code, we can see that log on the dashboard.
TensorBoard is widely used and is one of the standard ways to log and share
our training procedure. So, now we have two steps to take:

¢ Use our standard TensorBoard logging when we fit our model
e Open the UI Dashboard and see the result

Add TensorBoard to the code

To add TensorBoard logging in our training procedure, Keras has provided
us a CallBack. We can create a new object of that CallBack using the code
below:

log_dir = "logs/fit/" +

< datetime.datetime.now() .strftime ("%Y/m%d-%H%M%S")
tensorboard_callback =

< keras.callbacks.TensorBoard(log_dir=log_dir)

In the code above, at first we have created the destination path that we want to
store our logs. The standard that we used is putting all the logs in the parent
directory called logs/fit and name each of them based on the time that they
are created. For example: logs/fit/20251118-092033. Then we created a new
TensorBoard object with passing one argument to it. log_dir is the destination
path that our logs would be stored which we filled it with the directory name
that we have created earlier.

Now, it’s time to give our TensorBoard Callback to the fit function. To do so,
we can use an argument called callbacks in the fit function. This argument
takes a list of Callbacks. So, the only thing that we should do, is to add our
tensorboard_callback to the callbacks like below:

history = model.fit(
train_loader,
epochs=5,
validation_data=val_loader,
callbacks=[tensorboard_callback],

Now, when we fit our model, the training logs would be saved at logs/fit.

Source: https://keras.io/api/callbacks/tensorboard/

TensorBoard dashboard

Now, let’s open up the TensorBoard dashboard. The code to do that is like
below:

tensorboard --logdir logs/fit

Serving TensorBoard on localhost; to expose to the network, use a
- proxy or pass -—-bind_all

TensorBoard 2.20.0 at http://localhost:6006/ (Press CTRL+C to

< quit)

This code would make a local host, and you can access its dashboard though
web browser. Here is an example of a dashboard in a web browser.

If you want to load the TensorBoard dashboard in your Jupyter notebook,
you should first load it with the code below:

%load_ext

tensorboard

And then run the loading code:
%tensorboard - -logdir

logs

The output of the respective cell would work interactively, and you can access
the dashboard. Now, let’s get deeper into the Scalars tab in TensorBoard
dashboard. We are going to learn about the other tabs in the future tutorials.

TensorBoard TIMESERIES ~ SCALARS ~GRAPHS DISTRIBUTIONS HISTOGRAMS INACTIVE - Cco0o

Q Al | Scalars | image | Histogram 23 settings
Settings

GENERAL

SCALARS

HISTOGRAMS

IMAGES

Figure 1: tensorboard dashboard

Scalars tab
Scalars tab contains the plots of our loss and metrics.
As you can see, in the image above, we have 5 different sections:

e epoch_ accuracy

e epoch_ learning_rate

e epoch__loss

e evaluation__accuracy__vs__iteration
o evaluation_ loss_ vs_iteration

These sections can be opened to see the validation and train plots. In the left
panel, we can select the run that we want. We might have trained our model
multiple times, we can select the respective run to see the results. Also, for each
run, results of train and validation are being stored separately. We can choose
one of them to see its result.

Load tensorboard files in python

There are sometimes that we want to create clean figures of our training pro-
cedure in python. In order to do so, we can use our Tensorboard logs. They
already have the training information that we wanted. To load and use them
the most straight forward method, is by using a package called tbparse. To
use it, we can use the code below:

TensorBoard TIMESERIES ~ SCALARS ~ GRAPHS DISTRIBUTIONS HISTOGRAMS INACTIVE

caling

orting method: default

Figure 2: scalars tab

from tbparse import SummaryReader
log_dir = "your/log/dir"

reader = SummaryReader(log_dir)
df = reader.tensors

loss = df [df["tag"] == "epoch_loss"]
accuracy = df [df ["tag"] == "epoch_accuracy"]

In the code above, first we imported SummaryReader. Then we created a
SummaryReader object with the given log_dir. Because we used PyTorch,
as our backend, our data is stored in tensors. So, we put them in a variable
called df. To get the loss, we only should get the data which their tag is
epoch_loss. And for the accuracy, we have a tag called epoch_accuracy.

Now, we can plot them simply. Here is an example of plotting the loss of loaded
Tensorboard log.

from matplotlib import pyplot as plt
plt.figure()

plt.title("loss")
plt.plot(loss["step"], loss["value"], label="training loss")

We can also, load multiple Tensorboard logs and plot them together. You can
find an example in the code that we provided in GitHub. (link to the code can
be found in the page)

Your turn

e Draw accuracy and loss plots
— You should include train and validation on each one of them
e Add Tensorboard to your training procedure

Conclusion

In this tutorial, we learned about plotting our training procedure. First, we
explained the History object that .fit function returns. Then, we used its
data to plot our results. Second, we address that to get the History object, we
should wait

for the .fit function to finishes its job. To see the result’s online during train-
ing, we learned that we can use Tensorboard. After that, we added tensorboard
to our training procedure. Finally, we learned about the TensorBoard dash-
board and Scalars tab.

10

	Plot and TensorBoard
	Introduction
	Plot the training history
	TensorBoard
	Add TensorBoard to the code
	TensorBoard dashboard
	Scalars tab

	Load tensorboard files in python
	Your turn
	Conclusion

