
I2C: Part1

Ramin Zarebidoky (LiterallyTheOne)

29 Nov 2025

I2C: part 1
Introduction
In the previous Tutorial, we learned about Interrupt. In this tutorial we will
learn about I2C communication.

I2C Communication
Inter-Integrated Circuit (I2C), is a two-wire communication protocol. This
protocol is designed for short-distance communication between microcon-
trollers and peripherals. It uses two pins to set up the communication:

• SDA: Serial Data
• SCL: Serial Clock

This way of communication, allows us to connect more than 1 component to the
same 2 pins. For I2C every component has its own address. These addresses
are mostly 7-bit.

I2C is a master and slave protocol. It means that one device (Our Arduino)
is a master, and the other devices are slaves. A master device controls the
clock created in SCL. Also, master decides that if it wants to communicate
with a slave or not. Each message of master is like below:

Field
Bit
Count Description

START — SDA goes LOW while SCL is HIGH → begins
communication

Slave
Address

7 bits Unique address of target device (0–127)

R/W Bit 1 bit 0 = Write, 1 = Read
ACK/NACK 1 bit Receiver pulls SDA LOW to acknowledge (ACK),

HIGH for no-ack (NACK)

1



Field
Bit
Count Description

Data Byte
1

8 bits First byte of data to write or read

ACK/NACK 1 bit Receiver acknowledges the byte
Data Byte
2…N

8 bits Additional data bytes (optional, depends on
protocol)

ACK/NACK 1 bit Acknowledge after each data byte
STOP — SDA goes HIGH while SCL is HIGH → ends

communication

In the table above, you can see the message structure in I2C. First, master
puts the SDA to low. This indicates that all slaves should listen. After that, it
tells which slave address it wants to talk to. Then, with 1 bit tells the slave
if it wants to read or write. Next, there would be an acknowledgement bit. If
slave was available, it would set the acknowledgement bit to 0. (The default
value of SDA is always 1). After that, there would be a byte of data. Respect to
the mode (read or write), master can send or receive that byte. Then, whoever
receives the data, should set the acknowledgement bit to 0. These byte transfer
and acknowledgement can be repeated multiple times, until a stop signal. Stop
signal can be created when we put the SDA to 1.

To have a I2C communication in Arduino uno, we should use these pins:

signal pin
SDA A4
SCL A5

Wire
To control the I2C communication, Arduino has a library called Wire. We
can include Wire in our code like below:
#include <Wire.h>

To set up the I2C communication, we can use .begin() function, like below:
Wire.begin();

After doing that, we can start a communication with a slave in two ways:

• write
• read

To start a communication with a slave in order to write, we can use the code
below:

2



Wire.beginTransmission(addr); // start the communication in
order to write with the slave with the address of `addr`↪

Wire.write(data); // write data
Wire.endTransmission(); // finish transmission

If we want to our communication to be a read communication, we can
Wire.requestFrom(addr, number); // start a read communication

with the slave with the address of `addr` and read `number`
bytes

↪

↪

Wire.read(); // read bytes

Let’s connect an I2C component to the Arduino and check these functions.

Finding I2C address
• Connect the clock
• write the code
• Explain the code
• end transmission = 0

Figure 1: add-clock

#include <Arduino.h>
#include <Wire.h>

3



void setup()
{

Wire.begin();
Serial.begin(9600);

}

void loop()
{

for (int i = 0; i < 127; i++)
{

Wire.beginTransmission(i);
if (Wire.endTransmission() == 0)
{

Serial.println("Device found at address: 0x" + String(i,
HEX));↪

}
}
delay(2000);

}

Clock: DS1307
• Storing: 0x22 -> 22 not 2*16+2
• seconds, minutes, hours, weekday, day, month, year
• SQW: Square Wave Output

– Good for creating interrupts

Register Address
Seconds 0x00
Minutes 0x01
Hours 0x02
Day of Week 0x03
Day of Month 0x04
Month 0x05
Year 0x06

4



Link to the Datasheet

OLED: SSD1306

lib_deps =
Adafruit SSD1306

5

https://www.analog.com/media/en/technical-documentation/data-sheets/ds1307.pdf


Adafruit GFX Library

#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire);

if (!display.begin(SSD1306_SWITCHCAPVCC, SSD1306_ADDRESS))
{
Serial.println("SSD1306 failed!");
for (;;)

;
}

display.setTextSize(1);
display.setTextColor(WHITE, BLACK);

display.clearDisplay();
display.setCursor(0, 0);

display.print();
display.display();

Good Example

Project
Conclusion

6

https://github.com/adafruit/Adafruit_SSD1306/blob/master/examples/ssd1306_128x64_i2c/ssd1306_128x64_i2c.ino


Figure 2: OLED

7



Figure 3: OLED gif

8



Figure 4: oled ball

9



Figure 5: OLED Ball line

10


	I2C: part 1
	Introduction
	I2C Communication
	Wire
	Finding I2C address
	Clock: DS1307
	OLED: SSD1306
	Project
	Conclusion


